
Psychological Methods
Semantic Network Analysis (SemNA): A Tutorial on Preprocessing,
Estimating, and Analyzing Semantic Networks
Alexander P. Christensen and Yoed N. Kenett
Online First Publication, December 23, 2021. http://dx.doi.org/10.1037/met0000463

CITATION
Christensen, A. P., & Kenett, Y. N. (2021, December 23). Semantic Network Analysis (SemNA): A Tutorial on Preprocessing,
Estimating, and Analyzing Semantic Networks. Psychological Methods. Advance online publication.
http://dx.doi.org/10.1037/met0000463

Semantic Network Analysis (SemNA): A Tutorial on Preprocessing,
Estimating, and Analyzing Semantic Networks

Alexander P. Christensen1 and Yoed N. Kenett2
1 Department of Neurology, University of Pennsylvania

2 Faculty of Industrial Engineering and Management, Technion Israel Institute of Technology

Abstract
To date, the application of semantic network methodologies to study cognitive processes in psychological
phenomena has been limited in scope. One barrier to broader application is the lack of resources for
researchers unfamiliar with the approach. Another barrier, for both the unfamiliar and knowledgeable
researcher, is the tedious and laborious preprocessing of semantic data. We aim to minimize these barriers
by offering a comprehensive semantic network analysis pipeline (preprocessing, estimating, and analyzing
networks), and an associated R tutorial that uses a suite of R packages to accommodate the pipeline. Two
of these packages, SemNetDictionaries and SemNetCleaner, promote an efficient, reproducible, and trans-
parent approach to preprocessing linguistic data. The third package, SemNeT, provides methods and meas-
ures for estimating and statistically comparing semantic networks via a point-and-click graphical user
interface. Using real-world data, we present a start-to-finish pipeline from raw data to semantic network
analysis results. This article aims to provide resources for researchers, both the unfamiliar and knowledge-
able, that reduce some of the barriers for conducting semantic network analysis.

Translational Abstract
We introduce a pipeline and associated tutorial for constructing semantic networks from verbal fluency
data using open-source software packages in R. Verbal fluency is one of the most common neuropsy-
chological measures for capturing memory retrieval processes. Our pipeline allows researchers who are
unfamiliar or experienced with semantic network analysis to preprocess (e.g., spell-check, identify inap-
propriate responses), estimate, and analyze verbal fluency data as semantic networks, revealing the
structural features of memory retrieval. The R packages support transparent and reproducible prepro-
cessing of verbal fluency data, providing a standardized approach. Our empirical example demonstrates
how these packages can be applied to real-world data. Finally, our pipeline is modular meaning different
components (i.e., preprocessing, estimating, and analyzing) can be used in isolation, supporting other
semantic tasks (e.g., free association, semantic similarity) as well as cross-software compatibility (e.g.,
Cytoscape, SNAFU in Python, other R packages).

Keywords: semantic networks, verbal fluency, semantic memory, network science

Supplemental materials: https://doi.org/10.1037/met0000463.supp

In recent years, network science has become an increasingly popu-
lar approach to study psychological phenomena such as language,
learning, memory, personality, and psychopathology (Baronchelli et
al., 2013; Borge-Holthoefer & Arenas, 2010; Borsboom & Cramer,

2013; Cramer et al., 2012; Fried & Cramer, 2017; Karuza et al.,
2016; Siew et al., 2019). Network science is based on mathematical
graph theory, which provides quantitative methods to represent
and investigate complex systems as networks (Baronchelli et al.,
2013; Siew et al., 2019). Network science methodologies provide
a powerful computational approach for modeling cognitive struc-
tures such as semantic memory (i.e., memory of word meanings,
categorizations of concepts and facts, and knowledge about the
world; Kumar et al., 2021; Steyvers & Tenenbaum, 2005) and
mental lexicon (i.e., word meaning, pronunciation, and syntactic
characteristics; Stella et al., 2018; Wulff et al., 2019; for a review,
see Siew et al., 2019).

In semantic network models, nodes (circles) represent semantic or
lexical units, and edges (lines) represent the similarity, co-occurrence, or
strength of the associations between them (Collins & Loftus, 1975).
The nodes of a semantic network depend on the task; for example, they
can be category exemplars (verbal fluency), associations to cue words
(free association), or cue words whose similarities are rated (similarity

Alexander P. Christensen https://orcid.org/0000-0002-9798-7037
Yoed N. Kenett https://orcid.org/0000-0003-3872-7689
We are grateful to Cynthia Siew for her approval to include the spreadr

package in the Shiny application and we thank her for the helpful feedback
on the implementation. The authors did not preregister the study. All data,
code, and materials can be found on the Open Science Framework: https://
osf.io/hqxtc/
Correspondence concerning this article should be addressed to

Alexander P. Christensen, Department of Neurology, University of
Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, United
States. Email: alexpaulchristensen@gmail.com

1

Psychological Methods

© 2021 American Psychological Association
ISSN: 1082-989X https://doi.org/10.1037/met0000463

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/met0000463.supp
https://orcid.org/0000-0002-9798-7037
https://orcid.org/0000-0003-3872-7689
https://osf.io/hqxtc/
https://osf.io/hqxtc/
mailto:alexpaulchristensen@gmail.com
https://doi.org/10.1037/met0000463

judgments; De Deyne et al., 2016; Siew et al., 2019). For the purposes
of the present article, we focus on semantic networks estimated from
verbal fluency tasks; however, our pipeline is capable of handling other
semantic memory tasks (e.g., free association and similarity judgments).
Despite the rise of network analysis in psychology, there are a

couple of barriers that stand in the way of psychologists performing
semantic network analysis (SemNA). One barrier is that there is a
general lack of resources for how researchers can get started with
conducting their own SemNA (Zemla et al., 2020). Another barrier

is that preprocessing semantic data (e.g., spell-checking, removing
inappropriate responses, making exemplars homogeneous, format-
ting the data for SemNA) is tedious and time-consuming.

The goal of this article is to minimize these barriers by introducing
a suite of three R packages—SemNetDictionaries, SemNetCleaner,
and SemNeT—that are designed to facilitate a comprehensive pipeline
for preprocessing, estimating, and analyzing semantic networks (see
Figure 1). This article is organized by integrating a detailed discussion
on each step of the SemNA pipeline with associated R code that

Figure 1
A Step-by-Step Depiction of the Semantic Network Analysis (SemNA) Pipeline

Note. ASPL = average shortest path length; CC = clustering coefficient; Q = maximum modularity coefficient; CN = community network; NRW =
naïve random walk; TMFG = Triangulated Maximally Filtered Graph. See the online article for the color version of this figure.

2 CHRISTENSEN AND KENETT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

provides a tutorial from raw data to statistical analyses. Our tutorial
demonstrates how these R packages can be integrated into a single
seamless pipeline; however, we emphasize that the pipeline can be
modular such that researchers can perform one step following our tuto-
rial (e.g., preprocessing) and then export their data to other R packages
or software to perform different steps (e.g., network estimation and sta-
tistical analyses).

Semantic Networks Estimated From Verbal Fluency
Data

One popular method to estimate semantic networks is via verbal
fluency data (Siew et al., 2019; Zemla & Austerweil, 2018). Verbal
fluency is a classic neuropsychological measure (Ardila et al.,
2006) that asks participants to generate, in a short amount of time
(e.g., 60 s), category members of a specific category. These catego-
ries can be semantic (e.g., animals) or phonological (e.g., words
that start with “s”; Bousfield & Sedgewick, 1944). One strength of
using verbal fluency tasks to study semantic memory is that they
are quick to administer. In addition, some verbal fluency categories,
such as animals, have a well-defined taxonomy that shows minor
differences across different languages and cultures (e.g., animal
kingdom; Ardila et al., 2006; Goñi et al., 2011).
To get from the raw verbal fluency data that participants provide

(usually typed) to statistical analyses on semantic networks, three
main steps are required: preprocessing the raw data, estimating
networks from the preprocessed data, and statistically analyzing
the networks (see Figure 1). Preprocessing the raw data includes
spell-checking responses, identifying duplicate and inappropriate
responses (commonly referred to as perseverations and intrusions,
respectively), and homogenizing the naming scheme of exemplars
into a common response (e.g., water bear, moss piglets, and tardi-
grade into tardigrade). Finally, networks are estimated from the
preprocessed data using one of several network estimation
approaches (Zemla & Austerweil, 2018). These estimated net-
works are then statistically analyzed and compared using different
statistical approaches (e.g., random networks, bootstrap, random
walks, spreading activation). Below, we discuss each step of the
pipeline and provide associated R code.

Getting Started With the SemNA Pipeline in R

We used R Version 4.3 and RStudio Version 1.3.1093 to com-
plete the pipeline. There are several R packages that need to be in-
stalled to setup the pipeline, which require R Version 3.6.0 or
higher to be installed. The main packages are provided below (see
SI1 for R session information):

Install packages
install.packages(

c(“SemNetDictionaries”, “SemNetCleaner”,
“SemNeT”),

dependencies = c(“Imports”, “Suggests”)
)
Additional packages for Shiny GUI
install.packages(

c(
“shiny”, “shinyjs”, “shinyalert,”
“shinyMatrix”, “shinyBS”

)
)

Load packages
SemNetCleaner automatically loads
SemNetDictionaries

library(SemNetCleaner)
library(SemNeT)

Additional packages are also necessary for using the point-and-
click graphical user interface (GUI) used in this tutorial. For Linux
users, additional installations may be required for setting up Shiny
server, which is necessary for the GUI (see https://rstudio.com/
products/shiny/download-server/ubuntu/).

The reader can follow along with the article or use the tutorial R
script found in the supplementary information (SI2). An additional
R script template is also provided in the supplementary informa-
tion (SI3) for readers interested in using this tutorial on their own
data. Both the tutorial and template R scripts are also available on
the Open Science Framework (https://osf.io/hqxtc/).

Our tutorial walks through the SemNA pipeline and its accom-
panying R packages using a verbal fluency dataset from one of our
previously published papers (Christensen, Kenett, Cotter, et al.,
2018). In this article, we examined a personality trait, openness to
experience, and its relationship to semantic network structure.
This dataset includes 516 participants who completed the animals
verbal fluency task (1 min) and two measures of openness to expe-
rience: Big Five Aspects Scale (DeYoung et al., 2007) and NEO-
FFI-3 (McCrae & Costa, 2007). The participants were evenly split
into two groups based on low and high scores of openness to expe-
rience (both N’s = 258). The raw verbal fluency data is stored in
the SemNetCleaner package and can be accessed using the follow-
ing R code:

Raw verbal fluency data from
'SemNetCleaner'
data(“open.animals”)

Structure of the data
head(open.animals)

The dataset is called open.animals, which is a data frame object
that has 516 rows corresponding to each participant and 38 col-
umns corresponding to variables. The first column is the group
membership variable that denotes which group each participant
belongs (1 = low openness to experience and 2 = high openness to
experience). The second column contains each participant’s open-
ness to experience score. The third column is the participant’s
unique identifier variable (ID). The rest of the columns (4–38)
contain each participant’s animal names that they typed. Demo-
graphic and procedure details can be found in Christensen, Kenett,
Cotter, et al. (2018).

Preprocessing Verbal Fluency Data

Regardless of how verbal fluency data is acquired, whether experi-
menter recorded or participant typed, several coding errors are likely to
exist and need to be resolved before subsequent analyses. It’s neces-
sary, for example, to determine whether responses are perseverations
(given by a participant more than once), intrusions (inappropriate
exemplars for the category; e.g., animals category: tasselled wobbe-
gong, eucalyptus platypus, sugar bear; a shark, small tree, and fictional
character, respectively), or monikers (e.g., colloquial names or

SEMNA TUTORIAL 3

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://rstudio.com/products/shiny/download-server/ubuntu/
https://rstudio.com/products/shiny/download-server/ubuntu/
https://osf.io/hqxtc/

common misspellings) of a category exemplar (e.g., water bear, moss
piglet, tardigrade). Other potential errors include typos, misspelled
responses, inappropriate compound responses (i.e., responses where a
space is missing between responses; e.g., guineapig), and response
strings (i.e., multiple responses entered as a single string). After
resolving these errors, the data still need to be processed into a
format that can be used for network estimation. Moreover, com-
monly used behavioral measures such as perseverations and intru-
sions should be counted and extracted from the processed data.
To our knowledge, there is no standardized pipeline for prepro-

cessing verbal fluency data meaning that different labs are likely
making different decisions. This variability in decision-making
has significant consequences that compound in the network esti-
mation and statistical analysis steps. Recent work, where many
research teams independently preprocessed or analyzed a single
dataset, has demonstrated that the effects of these heterogeneous
decisions can be a substantial issue for the reliability of results
(Botvinik-Nezer et al., 2020; Silberzahn et al., 2018).
The lack of a standardized process and variation in analysis choices

motivated the creation of two R packages called SemNetDictionaries
and SemNetCleaner. The main purpose of these two packages is to
automate and streamline the preprocessing of verbal fluency data
while also minimizing preprocessing variability and the potential for
human error. In addition, the output provided by the preprocessing
step allows users to share their decisions to facilitate transparency and
encourage open science practices (see SI4 and SI5). The SemNetDic-
tionaries package assists SemNetCleaner by housing dictionary and
moniker glossaries for several verbal fluency categories, while the
SemNetCleaner package is the main preprocessing package. We first
introduce the SemNetDictionaries package because it has several
functions that are integrated into the SemNetCleaner package.

SemNetDictionaries Package

The SemNetDictionaries package contains several functions that
facilitate the management and loading of dictionaries into Sem-
NetCleaner. These dictionaries are used to spell-check and auto-correct
the raw verbal fluency data in the preprocessing step. This package also
includes a function that allows the user to create their own custom dic-
tionaries, enabling them to save their own dictionaries for future use.

Predefined Dictionaries

The predefined dictionaries contained in the package currently
include verbal fluency categories of animals, fruits, vegetables,
and jobs as well as synonym categories of hot and good (see Table

1). A general dictionary also accommodates phonological fluency
tasks with the use of single letters (e.g., words that start with “f”)
as well as more general text cleaning needs such as free associa-
tion and semantic similarity tasks that are common in the semantic
network literature (e.g., Nelson et al., 2004; Siew et al., 2019). For
each category and synonym dictionary, there is an accompanying
moniker glossary that is used to automatically convert monikers
(e.g., bear cat) and common misspellings (e.g., binterong) into a
homogeneous response (e.g., binturong). These categories were
included because the authors had data for them; however, we note
that there are other possible verbal fluency categories.

The development of these category and synonym dictionaries
included searching Google for lists of category exemplars and The-
saurus.com for synonyms. Their development was also aided by
responses from several hundred participants, who generated verbal
fluency responses for some of these categories (Christensen, Kenett,
Cotter, et al., 2018) as well as responses from other published (Zemla
& Austerweil, 2018) and unpublished data. Finally, the general dic-
tionary was retrieved from the dwyl Github repository for English
words: https://github.com/dwyl/english-words. Examples for how to
load some of these dictionaries are provided below:

Check for available dictionaries
dictionaries()
Load 'animals' dictionary
load.dictionaries(“animals”)
Load all words starting with 'f'
load.dictionaries(“f”)
Load general dictionary
load.dictionaries(“general”)
Load multiple dictionaries
load.dictionaries(“fruits”, “vegetables”)

The load.dictionaries function loads as many dictionaries as are
entered. The function alphabetically sorts and removes any dupli-
cates found between the dictionaries. Thus, it returns an alphabetized
vector the length of the unique words in the specified dictionaries.

Custom Dictionaries

A notable feature of the SemNetDictionaries package is that
users can define their own dictionaries using the append.dictionary
function. With this function, users can create their own custom
dictionaries or append predefined dictionaries so that they can be
used for future data cleaning and preprocessing. Researchers can
create their own dictionary using the following code:

Create a custom dictionary
append.dictionary(

“your”, “words”, “here,”
“in”, “quotations”, “and”,
“separated”, “by”, “commas,”
dictionary.name = “example,”
save.location = “choose”

)

All words that are entered in quotations and separated by commas
will be input into a new custom dictionary. The name of the diction-
ary can be defined with the dictionary.name argument (e.g., diction-
ary.name = “example”). All dictionaries that are saved using this
function have a specific file suffix (*.dictionary.rds), which allows
the dictionaries to be found by the function find.dictionaries(). A
user can also append a predefined dictionary (e.g., animals.

Table 1
Dictionaries in SemNetDictionaries

Dictionary Entries Task

Animals 1,210 Fluency (category)
Fruits 488 Fluency (category)
General 370,103 Fluency (category

and phonological),
free association,
semantic similarity

Good 284 Fluency (synonym)
Hot 281 Fluency (synonym)
Jobs 1,471 Fluency (category)
Vegetables 284 Fluency (category)

4 CHRISTENSEN AND KENETT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://github.com/dwyl/english-words

dictionary) by including the dictionary name in the function:
Append a predefined dictionary
append.dictionary(

animals.dictionary,
“tasselled wobbegong,”
dictionary.name = “new.animals,”
save.location = “choose”

)

Appending a predefined dictionary does not overwrite it; instead,
the user must save this dictionary somewhere on their computer
(e.g., save.location =“choose”). Dictionaries from the SemNetDic-
tionaries package and dictionaries stored using the append.diction-
ary function can be integrated into the SemNetCleaner package for
preprocessing (we describe how this is done in the next section).

Moniker Glossaries

To view the moniker glossaries, the user must directly access
the data file included in SemNetDictionaries. This can be done
using the following code:

Load 'animals' monikers
load.monikers("animals")

Similar to the dictionary files, all monikers included in the pack-
age will have a *.moniker suffix. Unlike the dictionaries, users are
unable to save and load their monikers for future use in the Sem-
NetCleaner package.

Crowdsourcing Dictionary and Moniker Glossaries

The dictionary and moniker glossaries are an expansive but not ex-
haustive resource for spell-checking for researchers. For the diction-
aries included in SemNetDictionaries, the animals dictionary is the
most developed. The animals dictionary is derived from several data
sets and web scraping searches. All other dictionaries are derived
from a few data sets. Because all dictionaries are nonexhaustive, par-
ticipants will inevitably generate category exemplars that are not
included in our dictionaries. Further, other categories exist that are
not included in SemNetDictionaries. In these cases, the general dic-
tionary can be used as a starter dictionary for preprocessing some of
the data; however, users may wish to develop their own dictionaries.
Users are encouraged to submit their dictionary and moniker

glossaries to our GitHub page: https://github.com/AlexChristensen/
SemNetDictionaries/issues/new/choose. Our GitHub will serve as a
centralized crowdsourcing database where dictionary and moniker
glossaries can continually be updated. Dictionary files can either be
created using the append.dictionary function in SemNetDictionaries
or at the end of the preprocessing stage (as we detail below).

Similarly, moniker glossaries can be created at the end of the pre-
processing stage. Details for submitting these files are printed to the
user at the end of the preprocessing and on the GitHub page. In the
next section, we explain the preprocessing stage and the output that
can be submitted to our GitHub.

SemNetCleaner Package

The SemNetCleaner package houses several functions for the
preprocessing of semantic data. The purpose of this package is to
facilitate efficient and reproducible preprocessing of verbal fluency
data. Notably, other R packages perform similar functions (e.g.,
spell-checking, text mining) such as hunspell (Ooms, 2018), qdap
(Rinker, 2020), and tm (Feinerer et al., 2008). However, the Sem-
NetCleaner package sets itself apart from these other packages by
focusing on commonly used tasks for SemNA (e.g., verbal flu-
ency), which facilitates automated preprocessing.

The SemNetCleaner package applies several steps to preprocess
raw verbal fluency data so that it is ready to be used for estimating
semantic networks. These steps include spell-checking, verifying
the accuracy of the spell-check, homogenizing responses, and
obtaining a cleaned response matrix for network estimation. To
initialize this process, the following code must be run:

Run 'textcleaner'
clean ,- textcleaner(data = open.animals
[,-c(1:2)], miss = 99,

partBY = “row”, dictionary =
“animals”)

In the above code, we are removing the first two columns (group
and openness to experience score variables) with the code [,-c(1,2)]
because they are not relevant for our analysis. The only variables
that should be entered into textcleaner are an optional column for
participant’s IDs and their respective verbal fluency data. The input
data for textcleaner should have participants’ response across the
rows (or columns). An optional row (or column) can contain partic-
ipant IDs. An example is provided in Table 2.

textcleaner is the main function that handles the data prepro-
cessing in SemNetCleaner (for argument descriptions, see Table
3). For input into data, it’s strongly recommended that the user
input the full verbal fluency dataset and not data already separated
into groups. If verbal fluency responses are already separated, then
they will need to be input and preprocessed separately. Therefore,
it’s preferable to separate the preprocessed data into groups at a
later stage of the SemNA pipeline.

Two arguments in the textcleaner function pertain to import-
ing custom dictionaries created using the append.dictionary
function in SemNetDictionaries. The dictionary argument allows

Table 2
Example of Data Input Into Textcleaner

Id vf_an_01 vf_an_02 vf_an_03 vf_an_04 vf_an_05 vf_an_06

4 cat dog giraffe elephant monkey chicken
6 cat mouse dog raccoon squirrel snake
7 monkeys cats dogs gorillas zebra fish
9 jaguar cat dog mice deer dolphin
10 cat dog fish bird monkey elephant
11 dog cat spider cow horse pig

SEMNA TUTORIAL 5

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://github.com/AlexChristensen/SemNetDictionaries/issues/new/choose
https://github.com/AlexChristensen/SemNetDictionaries/issues/new/choose

the user to type the name of one or more dictionaries to be used
for spell-checking including the names of dictionaries the user
has created. Dictionary names entered into the dictionary argu-
ment that are in the SemNetDictionaries package will be found
immediately while dictionaries that were created using the
append.dictionary function are searched for on the user’s com-
puter. This search finds any files with the *.dictionary suffix in
R’s environment, temporary files, and current working directory
as well as the user’s desktop and downloads folders. Users can
also specify a path to a directory where dictionaries are saved
using the add.path argument. This latter argument is most useful
when storing custom dictionaries in a single directory (e.g., a
project’s directory). Users can use add.path = “choose” to open
an interactive directory explorer to navigate to a folder where
there are saved dictionaries.

Spell-Check

By running the above code, textcleaner will start preprocessing the
data immediately. The first step of textcleaner is to spell-check and
attempt to auto-correct all responses. The processes of the automated
spell-check are printed to the user (see Figure 2). Textcleaner first
attempts to detect whether there is a unique identifier variable (ID)
that was included in the data. The second message to print in Figure 2,
IDs refer to variable: “ID,” tells the user what variable the IDs in the
output will refer to. In our example data, there was a variable named
ID. If an ID variable is not provided, then the IDs in the output will
refer to the row numbers (and the message will notify the user that
this is the case). Next, the dictionary is converted into either United
States (“US”) or United Kingdom (“UK”) word spelling (e.g., color
or color, theater or theater, gray or gray, program or program,
respectively).
The next five messages inform the user about the automated spell-

checking processes. The first process separates the correctly spelled
responses that were identified in the dictionary from responses not
found in the dictionary. The second process checks for responses that
are correctly spelled but are plural forms (e.g., cats) and converts
them to their singular forms (e.g., cat). The third process checks for
common misspellings and colloquial names and converts them into
homogeneous responses. The fourth process attempts to automatically

correct each remaining response (270 responses in our example) by
individually evaluating the similarity between each response and
responses in the dictionary using two edit distances or measures of
(dis)similarity: Damerau-Levenshtein distance (DL; Damerau, 1964;
Levenshtein, 1966) and QWERTY distance (or the sum of the physi-
cal distance—number of keys—between any two keys on a
QWERTY keyboard). Finally, the fifth process attempts to parse
responses that are more than one word (e.g., guinea pig). This last
process may also separate responses that were accidentally typed as a
single response by the participant as we show next (see Figure 3).

By pressing ENTER, the user can proceed to the manual spell-
check where responses that were not able to be automatically cor-
rected are checked by the user (in our example, only 38 need to be
checked; Figure 2). The manual spell-check begins with more com-
plicated cases first: responses where participants did not separate
their responses—that is, when participants were typing their
responses and did not hit a key (e.g., ENTER) to separate their
responses, producing a string of multiple responses as if they were a
single response. After these response strings are handled, then indi-
vidual responses are checked. The manual spell-check uses an inter-
active menu where the user has complete control over how to correct
responses. The first example of this menu is shown in Figure 3.

At first, the interface may be overwhelming; however, breaking
down the menu will make clear that every option has its purpose
and that the user is in total control over their spelling corrections.
Moreover, detailed help can be provided at any time by pressing H.

Starting from the top of Figure 3, Original string refers to the
raw response provided by the participant. In the example, the par-
ticipant did not separate their responses by pressing ENTER when
typing during the task and therefore the response appears as a
string of all of their responses (i.e., multiple responses were
entered as if they were a single response).

Auto-corrected string shows the participant’s original response af-
ter it’s been passed through the automated spell-checking process.
Two things are worth noting in our example: (a) all the responses
were correctly separated into individual responses and (b) squiral
and giraff were auto-corrected to squirrel and giraffe, respectively.

Target word displays the word that textcleaner has prompted to
be manually spell-checked. Note that this response is highlighted to
draw attention to what textcleaner needs the user to manually check.

Table 3
Textcleaner Arguments

Argument Description

data A matrix or data frame object that contains the participants’ IDs and semantic data.
miss A number or character that corresponds to the symbol used for missing data. Defaults to 99.
partBY Specifies whether participants are across the rows (“row”) or down the columns (“col”).
dictionary Specifies which dictionaries from SemNetDictionaries should be used (more than one is possible). If no dictionary is chosen,

then the “general” dictionary is used.
spelling Changes the spelling of English output to either “UK” or “US” spelling. Defaults to “US.”
add.path The path to a directory where the user’s saved dictionaries are stored. Allows for an expedited search for user created dic-

tionaries. Defaults to NULL.
keepStrings Whether strings (more than one word) should be kept together. Allows spelling checking of sentences. Defaults to FALSE.
allowPunctuations Whether punctuations are allowed to be included in responses. Default allows dashes (“-”) only. Input can include other

punctuations (e.g., c(“-”, “.”, “,”)). “All” allows all punctuations.
allowNumbers Whether numbers are allowed to be included in responses. Defaults to FALSE.
lowercase Whether letters in responses should be all lowercase. Defaults to TRUE.
continue A list object from a previous session of textcleaner. Allows progress to be continued after encountering an error or stopping

the preprocessing step. Defaults to NULL.

6 CHRISTENSEN AND KENETT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

Word options are options that change only the Target word
(i.e., catdog in our example). SKIP WORD will keep the Target
word “as is” and move on to the next response, ADD WORD
TO DICTIONARY will keep the Target word “as is” and add it
to a dictionary that can later be saved, TYPE MY OWN WORD
allows the user to type their own spelling correction, GOOGLE

WORD will open the user’s default Internet browser and “Goo-
gle” the Target word, and BAD WORD will mark the Target
word as an inappropriate response.

In contrast, String options are options that change the entire
Original string. KEEP ORIGINAL and KEEP AUTO-CORRECT
will change the response back the Original string or keep the

Figure 3
Example of Manual Spell-Check Interface

Note. See the online article for the color version of this figure.

Figure 2
Automated Spell-Check and Correction Processes in Textcleaner

Note. See the online article for the color version of this figure.

SEMNA TUTORIAL 7

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

Auto-corrected string “as is,” respectively; TYPE MY OWN
STRING allows the user to type response(s) that will replace the
entire string (rather than just catdog); GOOGLE STRING will
“Google” the entire string; and BAD STRING will mark all
responses as inappropriate responses.
Next, Response options are 10 responses from the dictionary that

were most similarly spelled (based on DL distance) to the Target
word and operate as spell correction suggestions for the Target word.
Below these options is a message about additional features that allow
the user to “go back” to the previous response by pressing B, get
detailed help for the response menu that we just described by pressing
H, and save the user’s progress and exit the function by pressing X.
In Figure 3, we have gone ahead and made a selection from these

options where we used TYPE MY OWNWORD to correct the Target
word because the participant did not hit the SPACE key to separate
cat and dog. After selecting TYPE MY OWNWORD (by pressing 3)
and pressing ENTER, a second prompt will appear for the user to type
their own words. Multiple words can be entered when typing your
own response by using a comma to separate responses. We input cat,
dog and pressed ENTER. After entering a correction, a message
appears to verify the response change (in our example: “cat” “dog”).
Finally, it’s important to reiterate that the interface depicted in

Figure 3 represents the most complicated case: a response where
the participant did not enter their responses separately. In most
cases, the target response will not be a string of responses but rather
a single response. In these cases, the interface will display Target
word, Word options, and Response options only. The reader is
encouraged to progress through the manual spell-check on their
own. We have provided a list of our spell correction changes in our
supplementary information (SI4), so that the reader can reproduce
the decisions that we’ve made. Alternatively, the reader can load
our preprocessed data by obtaining the open.preprocess data in the
SemNetCleaner package using the following code:

Load preprocessed data
clean,- open.preprocess

As a final step of the spell-check process, the user will be pro-
vided with instructions to verify the automated spell-check.

Verification takes place in an Excel-like spreadsheet in a window
that opens up after some instructions (see SI5 for our changes). At
the end of the textcleaner process, a message will print letting the
user know what output they can submit to our GitHub.

Textcleaner Output

With the preprocessing step complete, there are several output
objects of interest for basic verbal fluency analyses and the next
step of network estimation.

textcleaner’s output is stored in a list object, which we designated
clean in our example. These objects can be accessed using a dollar
sign (e.g., clean$responses) and nested objects can be accessed within
their parent object (e.g., clean$responses$original). For basic verbal
fluency analyses, the object clean$behavioral contains a data frame
with common behavioral measures of verbal fluency: perseverations
(number of repeated responses), intrusions (number of inappropriate
category exemplars), and appropriate responses (see Table 4). For net-
work estimation, the objects clean$responses$clean and clean
$responses$binary are of interest. The former is the cleaned verbal flu-
ency responses in the order they were typed by the participant whereas
the latter is a binary response matrix where participants are the rows
and responses are the columns with 1’s corresponding to responses a
participant provided and 0’s to responses they did not.

Exporting Preprocessed Data

Before exporting these matrices, it’s necessary to separate our
data into groups. To do so, we’ll first access the grouping variable
in the original dataset but also change the values to better reflect
what the group values represent (i.e., 1 = low openness to experi-
ence and 2 = high openness to experience):

Accessing and changing 'Group' variable
group ,- ifelse(open.animals$Group == 1,
“Low”, “High”)
Separate group data
low ,- clean$responses$clean[which(group
== “Low”),]
high ,- clean$responses$clean[which(group
== “High”),]

Table 4
Textcleaner Output Objects

Object Nested object Description

original Original response matrix where uppercase letters were made to lowercase and white spaces before and after
responses were removed.

responses clean Spell-corrected response matrix where the ordering of the original responses are preserved. Inappropriate and
duplicate responses have been removed.

binary Binary response matrix where rows are participants and columns are responses. 1’s are responses given by a par-
ticipant and 0’s are responses not given by a participant

correspondence A matrix of all unique original responses provided by the participants (“from” column) and what these responses
were changed to in the textcleaner process (“to” columns).

automated A matrix of only the unique original responses provided by participants (“from” column) that were changed (“to”
columns) during the automated spell-check processes.

manual A matrix of only the unique original responses provided by participants (“from” column) that were changed (“to”
column) during the manual spell-check process.

spellcheck verified A list of changes during the verification process.
behavioral — A data frame containing the number of perseverations, intrusions, and appropriate responses for each participant.
dictionary — Dictionary containing additional words added during manual spell-check. Only outputs if additional words were

added.
moniker — Same as output as $spellcheck$manual. Duplicated for ease of saving and exporting.

8 CHRISTENSEN AND KENETT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

To export these matrices and data frames so that they can be
used in other software, the write.csv function can be used by speci-
fying the object and path with a file name:

Save cleaned responses
write.csv(low, file = “low_cleaned_res-
ponses.csv”, row.names= TRUE)
write.csv(high, file = “high_cleaned_res

ponses.csv”, row.names =TRUE)

In the above code, we created a file called “low_cleaned.
responses.csv” and “high_cleaned.responses.csv,” which saved the
clean response matrix to.csv files. This file can then be imported
into other software to estimate and analyze semantic networks. For
transparency purposes, users may also export the clean$spellcheck
$manual object for colleagues and reviewers to evaluate decisions
made during the manual spell-check step (see our decisions in SI4).
Finally, the convert2snafu function will save the data in a for-

mat that is compatible with the GUI for the Semantic Network and
Fluency Utility (SNAFU) library (Zemla et al., 2020) in Python

Save SNAFU formatted data
convert2snafu(low, high, category =
“animals”)

This function accepts any number of groups from the same dataset
and requires the category argument to be set to the verbal fluency cat-
egory used. Currently, data sets must be converted one at a time so if
multiple categories are preprocessed, then separate files should be
created and merged to be used in SNAFU. This function will open
an interactive directory explorer so the user can navigate to the
desired save location as well as allow the user to input a file name.
The function will handle the rest by formatting the data and saving
the file as a.csv. Thus, this function allows users to seamlessly transi-
tion from this pipeline into the SNAFU GUI, facilitating cross-soft-
ware compatibility for network estimation methods and analyses.

Summary

In this section we described and demonstrated how the packages
SemNetDictionaries and SemNetCleaner are used to facilitate effi-
cient and reproducible preprocessing of verbal fluency data. In this
process, the raw data have been spell-checked, duplicate and inap-
propriate responses have been counted and removed, colloquial
names for responses have been converged into one response, and
cleaned response matrices have been generated. In addition, we
described how to export the cleaned response matrices so that
other software can be used to estimate and analyze semantic
networks.

Estimating Semantic Networks

Continuing with our SemNA pipeline, the next step is to estimate
semantic networks with the SemNeT package. The SemNeT package
offers two options for performing this step: R console code or a
point-and-click GUI using RStudio’s Shiny platform. For most users,
the Shiny application will be the most intuitive and straightforward
to use. For more experienced R users, code to perform these analyses

are provided in a script in our supplementary information (SI6). We
will continue our tutorial with the Shiny application.

SemNeT Shiny Application

To open the application, the following code can be run:
SemNeT Shiny Application
SemNeTShiny()

Running the above code will open a separate window pictured in
Figure 4. If a textcleaner object and a group object (like the objects
we created in the last section; clean and group, respectively) are in
R’s environment, then a drop-down menu and radio button to select
these objects will appear (see Figure 4). Other options that will
always appear are “Browse. . .” buttons to import a response matrix
and group variable from the user’s computer. If no group variable is
entered, then the Shiny application will assume that the data belong
to one group. Buttons to see examples of the data structures are also
available. The Shiny application will give preference to data
imported using the “Browse. . .” function. Finally, the “Load Data”
button will load the data into the application. A message window
will pop-up letting the user know that their data was loaded
successfully.

After the data are loaded, a new tab called “Network Estima-
tion” will open (see Figure 5), which we turn to next.

Network Estimation Methods

There are four network estimation methods currently avail-
able in SemNeT: community network (Goñi et al., 2011), naïve
random walk (Lerner et al., 2009), pathfinder network (Paulsen
et al., 1996; Quirin et al., 2008; Schvaneveldt, 1990), and corre-
lation-based networks (Kenett et al., 2013). We provide brief
descriptions of each of these approaches here along with the pa-
rameters that can be manipulated in the Shiny application and
SemNeT package (for more detailed descriptions of these meth-
ods, see Zemla & Austerweil, 2018). In the Shiny GUI, tooltips
are provided for each network estimation method’s parameters
by hovering over each parameter’s input. The parameters used
in the initial network estimation are used throughout the analy-
ses in the Shiny GUI.

Community Network

The community network (CN) method estimates a semantic net-
work using a co-occurrence matrix where two responses (e.g., cat
and dog) have occurred within some window or distance from each
response for each participant (Goñi et al., 2011). The size of the win-
dow is a parameter (“Window Size”) that can be manipulated and
defaults to 2 in SemNeT. To provide an example of this parameter,
we consider a hypothetical participant’s response pattern: cat, fish,
dog, aardvark, hippopotamus, and tardigrade. The distance between
dog and cat would be two, which would be within the window size
of 2 and counted as a co-occurrence. The distance between dog and
tardigrade, however, is 3 and therefore would not be counted as co-
occurring.

These co-occurrence counts are then used to infer whether they
are likely to occur by random chance using confidence intervals
from a binomial distribution. These confidence intervals are a

SEMNA TUTORIAL 9

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

second parameter (“Significance Level”) that can be adjusted using
a significance level, which defaults to .05 (or a 95% confidence
interval). Goñi et al. (2011) also implemented a clustering approach
to “enrich” the network by connecting all nodes that are in the same
cluster. This network enrichment has been implemented in SemNeT
as a parameter (“Enrich Network”) that can be changed via a drop-
down menu. The drop-down menu includes FALSE and TRUE for
whether the network should be enriched; the default is to not enrich
the network (FALSE).

Naïve RandomWalk

The naïve random walk (NRW; Lerner et al., 2009) method esti-
mates a semantic network based on the assumption that the data
are generated from an uncensored random walk or a stochastic
process of taking “steps” from one node in the network to another.
This process summarizes to estimating an edge between each adja-
cent pair of responses in the fluency response matrix. In this way,
the NRW method operates with the assumption that adjacent
responses are more likely to be related to one another. One imple-
mentation to reduce spurious co-occurrences is to count the co-
occurrences of adjacent pairs across the fluency response matrix
and then apply a threshold so that only a certain number or propor-
tion of adjacent pairs that co-occur are estimated to have an edge
in the network (Zemla & Austerweil, 2018). The type of threshold

is the first parameter (“Type”) to be selected. The two parameter
options are “Number,” which sets a threshold based on a certain
number of co-occurrences, or “Proportion,” which sets a threshold
based on a certain proportion of co-occurrences in the given sam-
ple. The “Threshold” parameter can be adjusted based on the
“Type” parameter selection. The default for the “Number” and
“Proportion” threshold is 0. The default type of threshold for the
NRW method is “Number.” When applying a threshold, previous
implementations have used “Number” with a threshold of 3
(Lerner et al., 2009). To our knowledge no recommendations have
been made for the “Proportion” threshold.

Pathfinder Network

The pathfinder network (PN) method, as implemented in Sem-
NeT estimates a semantic network using a proximity measure
(e.g., Euclidean distance) between every pair of responses in the
binary response matrix (Paulsen et al., 1996). The method starts
by computing the proximity matrix and retains the path with the
shortest distance between every pair of nodes only. There are two
parameters that can be manipulated, q and r, where q constrains
the number of steps between two nodes and r adjusts how the dis-
tance metric is computed. Following Zemla and Austerweil’s
(2018) implementation, SemNeT estimates the PN using the union
of all minimum spanning trees or a set of edges that links all nodes

Figure 4
SemNeT Shiny Application Graphical User Interface

Note. See the online article for the color version of this figure.

10 CHRISTENSEN AND KENETT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

in the network that minimizes the total distance of all edges in the
network (Quirin et al., 2008). This implementation sets the q pa-
rameter to N – 1 where there are no constraints on the maximum
number of steps between the shortest path between two nodes and
the r parameter to 1 where the distance is the Chebyshev dis-
tance. These parameter settings of the PN method estimate the
sparsest possible network. Although the q and r parameters can be
manipulated, the SemNeT package does not implement them due
to computational cost (see Quirin et al., 2008 for more details).

Correlation-Based Networks

Correlation-based network (CbN) methods constructs a semantic
network based on the co-occurrence of responses across the response
matrix. Using the binary response matrix, the CbN methods compute
an association measure between every pair of responses, resulting in
an association matrix. Most often, these association matrices are esti-
mated using Pearson’s correlation (Kenett et al., 2013); however, any
association measure could be used. In the original study that used our
example data, for example, cosine similarity was used to avoid nega-
tive associations between nodes in the network (for binary values, co-
sine similarity ranges from zero to one; Christensen, Kenett, Cotter,
et al., 2018). The association measure is therefore a parameter
(“Association Measure”) that can be manipulated with CbN; how-
ever, Pearson’s correlation and cosine similarity are recommended.
For CbN, a family of network filtering methods known as In-

formation Filtering Networks (Barfuss et al., 2016), which

include the minimum spanning trees that are used in the PN
method (Christensen, Kenett, Aste, et al., 2018; Mantegna,
1999), are used to estimate semantic networks (Christensen,
Kenett, Cotter, et al., 2018; Kenett et al., 2013). This family of
filtering methods applies various geometric constraints on the
association matrix to identify the most relevant information
between nodes while ensuring every node is connected in the
network. The two filtering methods that have been most widely
applied in the literature are the Planar Maximally Filtered
Graph (PMFG; Kenett et al., 2013; Tumminello et al., 2005)
and Triangulated Maximally Filtered Graph (TMFG; Christen-
sen, Kenett, Cotter, et al., 2018; Massara et al., 2016). We note
that only the TMFG is implemented in the SemNeT package due
to the time-intensiveness of the PMFG in R.1

Although the filters slightly differ (see Tumminello et al., 2005
and Massara et al., 2016 for PMFG and TMFG, respectively), their
goals are similar: Connect nodes by maximizing the strength of their
association (e.g., correlation) to other nodes while keeping the extant
network planar or so that the network could be depicted on a two-
dimensional surface without any edges crossing (e.g., Tumminello

Figure 5
Network Comparison Plot for the Correlation-Based Network Method

Note. The high openness to experience group’s network is on the left and the low openness to experience group’s network is on the right. ASPL = av-
erage shortest path length; CC = clustering coefficient; Q = maximum modularity coefficient. See the online article for the color version of this figure.

1 The PMFG method is available in R (https://github.com/
AlexChristensen/PMFG), Python (SNAFU), and MATLAB (https://www
.mathworks.com/matlabcentral/fileexchange/38689-pmfg?s_tid=prof
_contriblnk). The R implementation is substantially slower than the Python
and MATLAB implementations.

SEMNA TUTORIAL 11

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://github.com/AlexChristensen/PMFG
https://github.com/AlexChristensen/PMFG
https://www.mathworks.com/matlabcentral/fileexchange/38689-pmfg?s_tid=prof_contriblnk
https://www.mathworks.com/matlabcentral/fileexchange/38689-pmfg?s_tid=prof_contriblnk
https://www.mathworks.com/matlabcentral/fileexchange/38689-pmfg?s_tid=prof_contriblnk

et al., 2005). This constraint retains 3n – 6 edges in the network
where n is the number of nodes in the network. The results from the
PMFG and TMFG generally align with one another.
When constructing group-level networks, a common approach

for CbN is to retain responses that at least two participants in each
group has provided (e.g., Borodkin et al., 2016). The purpose of
this constraint has been to ensure that Pearson’s correlations can
be computed for all response pairs and to minimize spurious asso-
ciations driven by idiosyncrasies in the sample. The minimum
number of responses to retain is another parameter (“Minimum
Number of Responses”) that can be adjusted when using the CbN
method.
Finally, responses are “equated” or matched such that each

group only retains the responses that are given by all other groups
(Kenett et al., 2013). Equating responses ensures that all groups
have the same number of nodes and therefore the same number of
edges when estimating semantic networks with the CbN methods,
reducing the confounding effects of different numbers of nodes
and edges when making comparisons between networks (Borodkin
et al., 2016; van Wijk et al., 2010).

Estimating Networks in the SemNeT Shiny Application

To continue with our tutorial, we implemented the CbN estima-
tion method to be consistent with the analyses in the original paper
(Christensen, Kenett, Cotter, et al., 2018). To be comprehensive,
we performed the following analyses for each estimation method
and report the results in our supplementary information (SI7). For
each network estimation method, we used the SemNeT package’s
default parameter settings, which are the initialized parameter val-
ues when switching between estimation methods in the Shiny
application. The reader is encouraged to estimate different net-
works using the “Network Estimation Method” drop-down menu.
When moving forward with other analyses, the last performed net-
work estimation method and associated parameters will be carried
through all analyses. In Figure 5, we depict the comparison of
each groups network for the CbN method.
When selecting a network estimation method from the drop-down

menu, the parameter options will change. After a network estimation
is selected and the “Estimate Networks” button is clicked, then cita-
tions for the methods will appear on the left-hand section of the screen
below the parameters box. Citations will appear with each type of
analysis performed in the SemNeT Shiny application to provide
researchers with greater detail about the methods, but also to provide
quick APA style references for writing the Methods section of an arti-
cle (hyperlinked DOIs are provided where available).

Exporting Networks

These networks can be extracted and used in other software by
pressing the “Save Networks” button, which will produce a mes-
sage that allows the user to input a name for the object to be saved
(e.g., “my_networks”). Upon closing out of the Shiny application,
an object in R’s environment called my_networks will appear.
These networks will be labeled with their group name. In the
example code below, we show how to extract these networks and
demonstrate how to convert them to the igraph package’s (Csardi
& Nepusz, 2006) format as well as the popular network analysis
and visualization software Cytoscape (Shannon et al., 2003):

Extract group network results
from Network Estimation section
low,- my_networks$network$
Lowhigh,- my_networks$network$High
Convert network's to igraph's format
low.igraph,- convert2igraph(low)
high.igraph,- convert2igraph(high)
Convert network's to Cytoscape's format
write.csv(

convert2cytoscape(low),
file = “low_network_cytoscape.csv,”
row.names = FALSE

)
write.csv(

convert2cytoscape(high),
file = “high_network_cytoscape.csv,”
row.names = FALSE

)
Save networks for other software
write.csv(low, file = “low_network.csv”,
row.names = FALSE)
write.csv(high, file = “high_network.csv”,
row.names = FALSE)

The conversion of the networks to the igraph and Cytoscape
formats is another demonstration of how this pipeline can be mod-
ular and facilitate cross-software compatibility. Moreover, similar
to the preprocessed data export, the network objects low and high
can also be saved as.csv files and exported to other software.

Summary

In this section, we briefly reviewed the network estimation
methods available in the SemNeT package and estimated group-
based semantic networks using the CbN method. For networks
estimated in the SemNeT Shiny application, we demonstrated how
they can be converted to use with the popular igraph package in R
and Cytoscape as well as exported for other software. We continue
the tutorial by applying statistical analyses to the networks esti-
mated in this section. All statistical analyses can be completed
within the SemNeT Shiny application and are seamlessly con-
nected to the networks estimated in this section—that is, networks
for all subsequent analyses will be estimated with the same param-
eters used to estimate the networks in the Network Estimation tab.

Analyzing Semantic Networks

To continue with our SemNA pipeline, the user does not need to
exit the Shiny application. Instead, there are several statistical analy-
ses available in the SemNeT package to apply to the networks, which
appear as tabs in the Shiny application (see Figure 5). These analy-
ses include comparisons against random networks (Random Net-
work Analyses), bootstrapping the networks with group comparison
(Bootstrap Analyses), random walks on the networks with group
comparison (Random Walk Analyses), and spreading activation on
individual networks provided by the spreadr package (Spreading
Activation Analyses; Siew, 2019). For brevity, we discuss and per-
form a comparison against random networks and bootstrap network
group comparisons (see Kenett & Austerweil, 2016 and Siew, 2019
for explanations on the Random Walk and Spreading Activation
Analyses, respectively).

12 CHRISTENSEN AND KENETT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

Global NetworkMeasures

Global network measures are computed when the networks are
estimated in the Shiny applications Network Estimation tab.
Before comparing these measures between network estimation
methods (see online supplementary materials), we begin with an
explanation of these measures. Common SemNA metrics are
global (or macroscopic) network measures. These measures focus
on the structure of the entire network, emphasizing how nodes are
connected as a cohesive whole (Siew, 2019). In contrast, local (or
microscopic) network measures focus on the role of individual
nodes in the network (Bringmann et al., 2019). Below, we briefly
define and describe a few global network measures—average short-
est path length, clustering coefficient, and modularity—of the many
measures that are commonly used in SemNA (other global measures
such as diameter and small-world index can be computed using the
igraph or NetworkToolbox packages). A more extensive review of
these and other network measures can be found in Siew (2019).
A common network structure that tends to emerge across many

different systems (including semantic memory) is a small-world
structure (Kenett et al., 2014; Lerner et al., 2009; Watts & Stro-
gatz, 1998). Small-world networks are characterized by having a
moderate average shortest path length (ASPL) and large clustering
coefficient (CC). The ASPL refers to the average shortest number
of steps (i.e., edges) that is needed to get between any pair of
nodes in the network. That is, it’s the average of the minimum
number of steps from one node to all other nodes. In cognitive
models, ASPL may affect the activation of associations between
concepts (known as spreading activation; Anderson, 1983; Siew,
2019) such that a lower ASPL would increase the likelihood of
reaching a greater number associations (Christensen, Kenett, Cot-
ter, et al., 2018). Several studies of creative ability and semantic
networks have linked lower ASPL to greater creative ability (Ben-
edek et al., 2017; Kenett et al., 2014; Kenett & Faust, 2019b; but
see, Lange et al., 2020). These studies have argued that the lower
ASPL in the semantic network of people with higher creative abil-
ity may have allowed them to reach more remote associations,
which in turn could be combined into novel and useful associa-
tions (Kenett & Faust, 2019b).
The CC refers to the extent that two neighbors of a node will be

neighbors themselves, on average, in the network. A network with
a higher CC, for example, suggests that nodes that are near-neigh-
bors to each other tend to also co-occur and be connected. Wulff
et al. (2018) examined younger and older adults semantic net-
works that were estimated using category verbal fluency data and
found that the older adults had a smaller CC compared with the
younger adults. This structure was interpreted as having a role in
the cognitive slowing observed in older adults.
Finally, modularity measures how well a network compartmen-

talizes (or partitions) into subnetworks (i.e., smaller networks
within the overall network; Fortunato, 2010; Newman, 2006). The
maximum modularity coefficient (Q) estimates the extent to which
the network has dense connections between nodes within a subnet-
work and sparse (or few) connections between nodes in different
subnetworks. In this implementation, Q refers to the maximum
modularity possible given all possible partition organizations.
These partitions are estimated using the Louvain algorithm (Blon-
del et al., 2008) in the igraph package. Higher Q values suggest
that these subnetworks are more well-defined, while lower Q

values suggest that the network may be less readily segmented
into different parts. A few studies have demonstrated the signifi-
cance of modularity in cognitive networks (Kenett et al., 2016;
Siew, 2013). For example, Kenett et al. (2016) found that people
with high functioning autism (Asperger syndrome) had a more
modular semantic network relative to matched controls. They sug-
gested that this “hyper” modularity might be related to rigidity of
thought that often characterizes people with Asperger syndrome.
In Figure 5, our results show that the high openness to experience
group had a lower ASPL, higher CC, and lower Q than the low
openness to experience group, suggesting they had a more flexible
and interconnected semantic network.

Statistical Tests

Although global network measures provide metrics for the
structure of the network, they are generally qualitative and require
other approaches to statistically test for differences. Here, we
implement two common procedures that are available in the Sem-
NeT package that test whether these network measures are statisti-
cally different from random networks (comparisons against
random networks) and between groups (bootstrap network group
comparisons; Kenett et al., 2013, 2014).

Random Network Analyses

Comparisons against random networks can be performed to
determine whether the network measures observed in the groups
are different from what would be expected from a random network
with the same number of nodes and edges (Beckage et al., 2011;
Steyvers & Tenenbaum, 2005). Further, these random networks
are generated such that their degree sequence or the number of
connections to each node is preserved, maintaining the general
structure of the network.

These random networks are generated using Viger and Latapy’s
(2016) Markov chain Monte Carlo (MCMC) algorithm on a ran-
dom network with a specified degree sequence. Specifically, the
approach starts with a random network with the same number of
nodes and edges as the original network. The edges are than
randomized using the MCMC algorithm to ensure that each node
in the network preserves the number of connections it had in the
original network. The random network thus serves as a null model
or a test against chance that the empirical network’s structure was
not generated randomly. This approach is implemented using the
igraph package’s sample_degseq function.

The test against random networks approach works as follows:
(a) for each group’s network, generate X number of random net-
works (e.g., 1n000); (b) compute global network measures (i.e.,
ASPL, CC, and Q) for each group’s random networks, resulting in
a sampling distribution of these measures; and (c) compute a p-
value for the original group’s network measures based on the sam-
pling distribution of the random network’s measures (Kenett et al.,
2013). Significant p-values (,.05) suggest that the empirical net-
work’s structure is different from an equivalent random network’s
structure. To implement this procedure, the user should click on
the Random Analyses tab (see Figure 6).

There is one analysis and one computation parameter that can be
changed. For the analysis parameter, the “Number of Iterations” or
random networks generated can be adjusted. The default and standard
in the literature has been to generate 1,000 random networks per group

SEMNA TUTORIAL 13

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/met0000463.supp

network (e.g., Kenett et al., 2013). For the computation parameter, the
“Number of Processors” for parallel computing can be selected. The
default is for half the number of processors on the user’s machine. The
more processors, the faster the computation time. After clicking the
“Perform Random Network Analyses” button, a message will appear
letting the user know the analysis has started and that progress can be
tracked in their R console. The output from this function is a table that
reports the p-values for each group’s network compared with the ran-
dom network’s network measure values (e.g., “High (p-value)” and
“Low (p-value)”) as well as the means (e.g., “M.rand”) and standard
deviations (e.g., “SD.rand”) for the random network’s distribution of
global network measures (see Figure 6). As shown in Figure 6, all
global network measures were significantly different from random for
both openness to experience groups. This result suggests that both net-
works have significantly different structures than a random network
with the same number of nodes, edges, and degree sequence.

Bootstrap Analyses

The second analysis to statistically compare semantic networks
applies a bootstrap method (Efron, 1979). There are two bootstrap
approaches that can be applied in the SemNA pipeline: case-wise
and node-wise bootstrap. The case-wise approach samples N partici-
pants with replacement from the respective group, meaning that
some participants may be included more than once, while others
may not be included at all. For each replicate sample, the network
estimation method is applied and then the global network measures
—ASPL, CC, and Q—are computed. This process repeats iteratively
(usually 1,000 times).

The node-wise approach is available for the CbN method only
because it requires that the groups’ networks consist of the exact
same nodes. The node-wise approach starts by selecting a subset
of nodes in the network (e.g., 50%), then estimating the net-
works for each group using this subset of nodes, and finally,
computing the network measures for each network (Kenett et al.,
2014). This method is known as without replacement because
each node can only be selected once (Bertail, 1997; Politis &
Romano, 1994; Shao, 2003). This process repeats iteratively
(usually 1,000 times). The rationale for the node-wise approach
is twofold: (a) if the full networks differ from each other, then
any partial network consisting of the same nodes should also be
different, and thus (b) the generation of many partial networks
allows for a direct statistical comparison between the full net-
works (Kenett et al., 2016).

For both bootstrapping approaches, these bootstrap networks form
sampling distributions of the global network measures, but solely
based on the empirical data. These sampling distributions can then be
statistically compared with a t test if there are only two groups being
compared. If there are two or more groups, then an analysis of covar-
iance (ANCOVA) with the number of edges used as a covariate can
be used to estimating whether the global network measures are differ-
ent between each group’s networks. Including edges as a covariate
statistically controls for a confound that affects comparing network
measures between groups. ASPL, for example, will often be smaller
for networks with a greater ratio of edges to nodes (van Wijk et al.,
2010). Adjusted means and effect sizes that account for this confound
are then estimated. To continue with the tutorial, the user can click
on the Bootstrap Analyses tab (see Figure 7).

Figure 6
Random Network Analyses in Shiny Application

Note. ASPL = average shortest path length; CC = clustering coefficient; Q = maximum modularity coefficient. See the online article for the color ver-
sion of this figure.

14 CHRISTENSEN AND KENETT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

Similar to the Random Network Analyses, users can select the
number of bootstrap samples (i.e., “Number of Iterations”) and the
“Number of Processing Cores.” Again, the default is for 1,000 repli-
cate samples and half of the users processors, respectively. After the
analyses are complete, a table with the results will appear. In Figure
7, we applied the ANCOVA approach to the CbN networks, which
found the high openness to experience group had lower ASPL rela-
tive to the low openness to experience group (moderate-to-large
effect size). For CC, we found the opposite: larger CC for the high
openness to experience group relative to the low openness to experi-
ence group (moderate-to-large effect size). Finally, we found the
high openness to experience group had lower Q relative to the low
openness to experience group (large effect size). More complicated
group analysis designs, such as a two-way ANOVA, can be per-
formed using code in SemNeT’s test.bootSemNeT function.
In Figure 7, the CbN method’s results are displayed as an example

of the output from the Shiny application. Partial eta squared effect sizes
based on Cohen’s (1988) guidelines are reported with their interpreta-
tions provided in the left half of the application below the parameter
selection section (see Figure 7). In addition, a button labeled “Generate
Plots” will appear after the analysis is finished. Pressing this button will
generate plots for the distribution of the ASPL, CC, and Q for each

group. The Shiny application will offer a preview of these plots (ASPL
is displayed in Figure 7) but for publication purposes larger or individ-
ual plots are often necessary. To demonstrate how to generate and
access individual plots, we’ll turn to the output of the Shiny application.

Shiny Results Output

There are several options for returning output from the Shiny
application. The first and recommended method is to use the Save
and Reset All Results tab. In this tab, the user will find two buttons:
“Save All Results” and “Clear Results.” The “Save All Results” but-
ton will prompt the user to name their output. After naming the out-
put, the results of the last performed analyses across all analysis tabs
will be saved as the user-specified named object in R’s environment
after the user closes the application. The “Clear Results” button will
clear all analysis results and reset the application back to the Network
Estimation tab. Importantly, the verbal fluency and group data will
not be cleared and any saved results prior to clearing the results will
still appear in R’s environment.

The second method is to save individual results by using the “Save
. . .” button within each analysis tab. Again, users will be prompted to
name the object that will be saved to R’s environment. This allows users

Figure 7
Bootstrap Analyses in Shiny Application (CbN Method)

Note. CC = clustering coefficient; Q = maximum modularity coefficient. See the online article for the color version of this figure.

SEMNA TUTORIAL 15

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

to perform and save the results of different network estimation methods
or analyses without switching or clearing the results of the application.
Finally, as a fail-safe, all data and results from the last per-

formed analyses in the application will be saved in an object called
resultShiny in R’s environment upon closing the application (i.e.,
clicking on the “X” in the top right corner of the window). A mes-
sage will print letting the user know that this has been done. Below
is a table (see Table 5) describing the possible output:
The objects included in the output will depend what analyses were

performed and how the results were saved. By default, data, group, net-
work, measures, and comparePlot will always be output with the other
analyses. If, for example, we estimated all analyses and went into the
Bootstrap Network Analyses tab and clicked the “Save Bootstrap Anal-
yses” button, then a list containing only the default and bootstrap, boot-
strapTest, and bootstrapPlot objects will be saved (other analysis objects
will not be included). If the “Save All Results” button in the Save and
Reset All Results tab is used, then all data and analyses will be saved.
By exiting the application, specific analysis objects can be

accessed, such as the bootstrap plots that were generated in our
last example, using the standard $structure mentioned previously.
The following code can be entered into R’s console to access and
plot individual bootstrap plots:

Plot bootstrap results
ASPL
plot(resultShiny$bootstrapPlot$aspl)
CC
plot(resultShiny$bootstrapPlot$cc)
Q
plot(resultShiny$bootstrapPlot$q)

Each network measure is output as an individual plot, which
allows the user to manipulate each plot into the desired size for pre-
sentation and publication (e.g., making sure plot features are large
enough to be easily discernible). Moreover, each plot is generated
using the ggplot2 package (Wickham, 2016), which means that they
can be manipulated to use different colors (e.g., distributions, box-
plots, dots) and adjust titles, axis labels, and legend keys (see http://
www.cookbook-r.com/Graphs/ for getting started).

Summary

In this section, we briefly reviewed two statistical analyses techni-
ques, comparisons against random networks and bootstrap network

group comparisons, available in the SemNeT package. We then dem-
onstrated how to perform these analyses using the Shiny application
and provided an overview of how the output can be saved. From this
output, we demonstrated how to obtain individual plots from the boot-
strap results that enables the user to generate publication ready figures.

SemNA and SNAFU Comparison

We introduce a comprehensive SemNA pipeline that can be applied
sequential or modular fashion. The modular nature of the pipeline
opens the doors for compatibility with other software. One closely
related software is the SNAFU or the Semantic Network and Fluency
Utility (Zemla et al., 2020) library in Python. SNAFU was developed
specifically for verbal fluency semantic network analysis and provides
many of the same behavioral and network measures available in
SemNA (see Table 6). Similarly, both SemNA and SNAFU are ca-
pable of investigating group- and individual-based networks.
There are three key differences between the software: (a) Sem-
NA’s preprocessing capabilities are more thorough and can be
applied to tasks other than verbal fluency (e.g., free association
and semantic similarity); (b) SemNA contains statistical analy-
ses for comparing networks; and (c) SemNA is designed to be
compatible with many other network analysis software includ-
ing SNAFU. Although not demonstrated in our article, Sem-
NA’s statistical analyses can handle more complicated designs
including two-way ANOVA and longitudinal designs. In sum,
SemNA is designed to be a flexible and comprehensive tool for
semantic network analysis whereas SNAFU is designed to be
specific to verbal fluency semantic network analysis.

Discussion

In this article, we put forward a SemNA pipeline for preprocessing,
estimating, and analyzing semantic networks. This pipeline was
accompanied by three R packages—SemNetDictionaries, Sem-
NetCleaner, and SemNeT—that are designed together to facilitate the
application of semantic network analysis. With these packages, we
demonstrated how this pipeline could be applied to real-world data by
reanalyzing verbal fluency data previously collected by Christensen,
Kenett, Cotter, et al. (2018). To get to these results, this tutorial went
step-by-step through preprocessing the verbal fluency data by check-
ing for spelling errors and inappropriate and duplicate responses, and

Table 5
SemNeT Shiny Application Output Objects

Object Description

data Data imported into the Shiny application.
group Group variable imported into the Shiny application.
network The networks estimated in the Network Estimation tab. These networks will be labeled using the group variable.
measures Network measures ASPL, CC, and Q for each group’s networks estimated in the Network Estimation tab.
comparePlot Visualization of each group’s networks from the Network Estimation tab.
randomTest Statistical results from the Random Network Analyses tab.
bootstrap The bootstrapped samples and measures from the Bootstrap Analyses tab.
bootstrapTest Statistical results table from the Bootstrap Analyses tab.
bootstrapPlot Plots of the statistical results from the Bootstrap Analyses tab.
randomWalk Results from the Random Walk Analyses tab.
spreadingActivation Results from the Spreading Activation Analyses tab.
spreadingActivationPlot Plots of the results in the Spreading Activation Analyses tab.

Note. ASPL = average shortest path length; CC = clustering coefficient; Q = maximum modularity coefficient.

16 CHRISTENSEN AND KENETT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

http://www.cookbook-r.com/Graphs/
http://www.cookbook-r.com/Graphs/

then loading the data into the SemNeT Shiny application to estimate
and analyze semantic networks.
This tutorial serves two roles not yet filled in the literature: First, for

novice SemNA researchers, we provided a step-by-step resource for
how to execute SemNA with verbal fluency data; second, for experi-
enced SemNA researchers, we provided a standardized approach to
efficiently preprocess verbal fluency data, while also increasing the
transparency of this process. Because the pipeline is modular, novice
and experienced SemNA researchers alike are encouraged to inter-
change parts of the pipeline with other software, maximizing the
potential analyses available for their verbal fluency data.
The standardization of the preprocessing stage offers a few advan-

ces for semantic network analysis and beyond. First, the preprocessing
of semantic data becomes more consistent and transparent across
researchers, encouraging open science practices (e.g., output can be
shared in the peer-review process; see SI4 and SI5). Such an approach
enables common practices across labs and fields to emerge. Moreover,
with the rise of big data and crowd-sourcing (Mandera et al., in press),
norms can be developed for each verbal fluency category (e.g., De
Deyne et al., 2019), which would further facilitate the automation and
accuracy of preprocessing verbal fluency data. The SemNetDiction-
aries package, for example, provides researchers with the capability
to create their own dictionaries, which can stimulate the development
of these norms. Broadly, researchers are encouraged to share their dic-
tionaries and monikers on our GitHub, so that future versions can
include them as predefined glossaries in the package.
Second, the SemNetCleaner package enables researchers to effi-

ciently preprocess their verbal fluency data into a format that can be
used with any semantic network estimation method available in Sem-
NeT and SNAFU (Zemla & Austerweil, 2018; Zemla et al., 2020).
The speed with which SemNetCleaner preprocesses verbal fluency
data is magnitudes times faster than any manual method. Take, for
instance, our example data: there were over 9,000 responses and over
800 unique responses. Although many of these responses were spelled
correctly, the user was required to make fewer than 50 decisions. With
SemNetCleaner, the entire preprocessing step can be managed in under
20 min.
Beyond SemNA, the automated preprocessing step can be used to

achieve more reliable verbal fluency results because human error is
largely removed from this process. This means that researchers who

are not necessarily interested in performing SemNA can still use Sem-
NetCleaner to ensure the reliability and validity of their verbal fluency
results (e.g., total number of appropriate responses). This becomes
especially important when using automated methods of scoring for
verbal fluency (e.g., clustering and switching, semantic and lexical di-
versity; Kim et al., 2019; Pakhomov et al., 2016; Zemla et al., 2020).

Finally, the SemNeT package offers researchers a few methods for
the analysis of semantic network data (including some methods not
covered in this article such as random walk analysis; Kenett & Auster-
weil, 2016). One notable analysis comes from the spreadr package
(Siew, 2019), which simulates spreading activation across a network.
Spreading activation is an important concept in the semantic memory
literature, which may provide insights into how information is
retrieved from semantic memory. This pipeline can seamlessly be
integrated with spreadr by using the SemNeT Shiny application for
network estimation and statistical analyses (i.e., Spreading Activation
Analyses tab). With the networks outputted from the network estima-
tion stage, researchers can also feasibly implement other network
analysis packages such as igraph, qgraph (Epskamp et al., 2012), and
NetworkToolbox (Christensen, 2018) in R to compute other network
measures not covered in this tutorial (e.g., centrality measures).

Importantly, while we focused our analyses on two groups,
SemNA is fully capable of analyzing more complicated such as two-
way ANOVA, longitudinal, and within-person designs. These more
complicated designs are less feasibly accomplished in the SemNeT
Shiny application and should be executing using R code. Nonetheless,
the preprocessing stage can be carried out on all designs with the data
being separated into the designs structure afterward. In sum, this suite
of open-source R packages provides a broad set of flexible tools for
researchers to conduct SemNA efficiently and feasibly while produc-
ing reliable and reproducible SemNA results.

Best Practices and Open Questions

More generally, several open questions related to the semantic net-
work analysis best practices remain currently debated. To our knowl-
edge, there has only been one simulation study that evaluated
different network estimation methods (Zemla & Austerweil, 2018).2

Table 6
Comparison of SemNA and SNAFU

Features SemNA SNAFU

Software R Python
Focus Group-based networks Individual-based networks
Preprocessing Yes (extensive) Yes
Behavioral analyses Intrusions, perseverations, total, and unique responses Intrusions, preservations, total responses, clustering, switching
Network estimation
methods

Pathfinder, correlation-based, naïve random walk,
community

Pathfinder, correlation-based, naïve random walk, community,
U-INVITE, First Edge

Network measures Average shortest path length, clustering coefficient,
modularity, and others (see compatibility)

Average shortest path length, clustering coefficient, small-world-
ness, degree distribution, density

Statistical analyses Bootstrap, random network —

Spreading activation
analyses

Random walk, spreading activation (spreadr) —

GUI Yes Yes
Compatibility (software) igraph (R), qgraph (R), NetworkToolbox (R), spreadr

(R), SNAFU (Python), Cytoscape
—

Note. SemNA = semantic network analysis; SNAFU = Semantic Network and Fluency Utility; GUI = graphical user interface.

2 For a review and discussion of this simulation, please see the
supplementary information (SI8)

SEMNA TUTORIAL 17

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

There is a pressing need to identify best practices for each network
estimation method and their parameters. The network estimation
functions in SemNeT and the GUI use their default values that have
been used by their seminal articles, yet it remains unclear whether
these are the optimal parameters. Simulation studies are necessary to
determine how these methods perform under different conditions and
whether some should be preferred over others.
Key questions for simulations to answer are: What sample sizes

are necessary for semantic network analysis? Some studies have
used as few as 30 people per group (Rastelli et al., 2020), while
others have used more than 200 people per group (Christensen,
Kenett, Cotter, et al., 2018). To our knowledge, there are no quanti-
tative procedures available that can determine power for network
analysis. What is the effect of different data generating mechanisms
for participant levels (individuals vs. groups) and tasks (fluency, free
association, and semantic similarity; Hills & Kenett, 2021)? Do dif-
ferent network estimation parameters perform better for certain tasks
or conditions? How should discrepancies between methods be inter-
preted? These questions underlie deeper theoretical questions (Hills
& Kenett, 2021): Do individuals have different network structures
and different processes? How are group-level networks related to
individual-level networks? How should edges in semantic networks
be defined? Are semantic networks stable or vary over time? While
a thorough discussion of these issues is outside the scope of this tu-
torial article, the reader is referred to Hills and Kenett (2021) for a
current discussion of these issues.
Some avenues forward, besides simulation studies, might be to

estimate all four methods and compare them as we’ve done. The pat-
tern of our results demonstrates some consensus between estimation
methods (see online supplementary materials), suggesting that con-
sensus results could be used for the most reliable interpretations.
Another avenue is to preregister one network estimation method that
has been used in related work. This approach at least keeps consis-
tency between investigations and can allow for between-sample
inferences. Some work, for example, has used group-level correla-
tion-based networks of fluency data for the semantic networks of
highly creative people, finding they have more interconnected (higher
ASPL) and flexible (lower Q) structures (Kenett et al., 2014; Kenett
et al., 2016; Li et al., 2021; Rastelli et al., 2020). Although our soft-
ware contributes to standardizing the semantic network pipeline, we
urge researchers to work toward developing best practices to guide
new and expert researchers on what methods to use.

SemNA Future Directions

There are several future directions specific to the SemNA pipeline.
The first is to expand the functionality of the statistical and network
analyses to include free association and semantic similarity tasks. In
present form, the preprocessing packages can be used to provide
some automaticity of free association and semantic similarity tasks.
Future versions of the SemNA pipeline should accommodate a larger
number of analyses that can be applied to free association and seman-
tic similarity tasks. Expanding dictionaries to include other categories
but also more languages will further increase the accessibility of the
software to researchers globally. Using a community-driven database
hosted on GitHub, the SemNA pipeline can incorporate researcher-
derived dictionaries into SemNA to facilitate the integration of other
categories and languages. Finally, it should accommodate more com-
plex designs (e.g., longitudinal, within-subject), and additional types

of data (e.g., free associations, semantic relatedness), in a more user-
friendly and compatible way.

Conclusion

With this pipeline in hand, researchers can readily apply SemNA
to their own data, opening doors to applications of SemNA in new
domains. The strength of analyzing verbal fluency data is that it is
quick and easy to administer within any experimental paradigm. For
applied researchers, this makes verbal fluency data an attractive
option for studying cognitive processes associated with behavioral
and psychopathological phenomena. Indeed, some promising ave-
nues for future research are to understand how the structure and
processes of semantic memory are associated with psychopathologi-
cal disorders (Elvevåg et al., 2017; Holmlund et al., 2019; Kenett &
Faust, 2019a; Kenett et al., 2016) and personality traits (Christensen,
Kenett, Cotter, et al., 2018). To date, there have been only a handful
of studies that have quantitatively examined the semantic memory
processes that underlie these and other psychological phenomena.
By quantitatively analyzing semantic networks, cognitive theory can
be extended and integrated into psychological theories, bridging
these sometimes disparate yet parallel lines of research.

References

Anderson, J. R. (1983). A spreading activation theory of memory. Journal
of Verbal Learning and Verbal Behavior, 22(3), 261–295. https://doi
.org/10.1016/S0022-5371(83)90201-3

Ardila, A., Ostrosky-Solís, F., & Bernal, B. (2006). Cognitive testing to-
ward the future: The example of semantic verbal fluency (ANIMALS).
International Journal of Psychology, 41(5), 324–332. https://doi.org/10
.1080/00207590500345542

Barfuss, W., Massara, G. P., Di Matteo, T., & Aste, T. (2016). Parsimoni-
ous modeling with information filtering networks. Physical Review E,
94(6-1), 062306. https://doi.org/10.1103/PhysRevE.94.062306

Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., &
Christiansen, M. H. (2013). Networks in cognitive science. Trends in
Cognitive Sciences, 17(7), 348–360. https://doi.org/10.1016/j.tics.2013
.04.010

Beckage, N., Smith, L., & Hills, T. (2011). Small worlds and semantic net-
work growth in typical and late talkers. PLoS ONE, 6(5), e19348.
https://doi.org/10.1371/journal.pone.0019348

Benedek, M., Kenett, Y. N., Umdasch, K., Anaki, D., Faust, M., & Neubauer,
A. C. (2017). How semantic memory structure and intelligence contribute
to creative thought: A network science approach. Thinking & Reasoning,
23(2), 158–183. https://doi.org/10.1080/13546783.2016.1278034

Bertail, P. (1997). Second-order properties of an extrapolated bootstrap
without replacement under weak assumptions. Bernoulli, 3(2), 149–179.
https://doi.org/10.2307/3318585

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008).
Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/
10.1088/1742-5468/2008/10/P10008

Borge-Holthoefer, J., & Arenas, A. (2010). Semantic networks: Structure and
dynamics. Entropy, 12(5), 1264–1302. https://doi.org/10.3390/e12051264

Borodkin, K., Kenett, Y. N., Faust, M., & Mashal, N. (2016). When pump-
kin is closer to onion than to squash: The structure of the second language
lexicon. Cognition, 156(2016), 60–70. https://doi.org/10.1016/j.cognition
.2016.07.014

Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integra-
tive approach to the structure of psychopathology. Annual Review of

18 CHRISTENSEN AND KENETT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/met0000463.supp
https://doi.org/10.1016/S0022-5371(83)90201-3
https://doi.org/10.1016/S0022-5371(83)90201-3
https://doi.org/10.1080/00207590500345542
https://doi.org/10.1080/00207590500345542
https://doi.org/10.1103/PhysRevE.94.062306
https://doi.org/10.1016/j.tics.2013.04.010
https://doi.org/10.1016/j.tics.2013.04.010
https://doi.org/10.1371/journal.pone.0019348
https://doi.org/10.1080/13546783.2016.1278034
https://doi.org/10.2307/3318585
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.3390/e12051264
https://doi.org/10.1016/j.cognition.2016.07.014
https://doi.org/10.1016/j.cognition.2016.07.014

Clinical Psychology, 9, 91–121. https://doi.org/10.1146/annurev-clinpsy
-050212-185608

Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J.,
Johannesson, M., & Schonberg, T. (2020). Variability in the analysis of
a single neuroimaging dataset by many teams. Nature, 582(7810),
84–88. https://doi.org/10.1038/s41586-020-2314-9

Bousfield, W. A., & Sedgewick, C. H. W. (1944). An analysis of sequen-
ces of restricted associative responses. The Journal of General Psychol-
ogy, 30(2), 149–165. https://doi.org/10.1080/00221309.1944.10544467

Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D.,
Wichers, M., Wigman, J. T. W., & Snippe, E. (2019). What do centrality
measures measure in psychology networks? Journal of Abnormal Psy-
chology, 128(8), 892–903. https://doi.org/10.1037/abn0000446

Christensen, A. P. (2018). NetworkToolbox: Methods and measures for
brain, cognitive, and psychometric network analysis in R. The R Jour-
nal, 10(2), 422–439. https://doi.org/10.32614/RJ-2018-065

Christensen, A. P., Kenett, Y. N., Aste, T., Silvia, P. J., & Kwapil, T. R.
(2018). Network structure of the Wisconsin Schizotypy Scales–Short
Forms: Examining psychometric network filtering approaches. Behavior
Research Methods, 50(6), 2531–2550. https://doi.org/10.3758/s13428
-018-1032-9

Christensen, A. P., Kenett, Y. N., Cotter, K. N., Beaty, R. E., & Silvia,
P. J. (2018). Remotely close associations: Openness to experience and
semantic memory structure. European Journal of Personality, 32(4),
480–492. https://doi.org/10.1002/per.2157

Cohen, J. (1988). Statistical power analysis for the behavioural sciences
(2nd ed.). Routledge. https://doi.org/10.4324/9780203771587

Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of
semantic processing. Psychological Review, 82(6), 407–428. https://doi
.org/10.1037/0033-295X.82.6.407

Cramer, A. O. J., Van Der Sluis, S., Noordhof, A., Wichers, M.,
Geschwind, N., Aggen, S. H., Kendler, K. S., & Borsboom, D. (2012).
Dimensions of normal personality as networks in search of equilibrium:
You can’t like parties if you don’t like people. European Journal of Per-
sonality, 26(4), 414–431. https://doi.org/10.1002/per.1866

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex
network research. InterJournal, Complex Systems, 1695, 1–9. https://www
.semanticscholar.org/paper/The-igraph-software-package-for-complex-
network-Cs/\%C3/\%A1rdi-Nepusz/1d2744b83519657f5f2610698a8dd
d177ced4f5c?p2df

Damerau, F. J. (1964). A technique for computer detection and correction
of spelling errors. Communications of the ACM, 7(3), 171–176. https://
doi.org/10.1145/363958.363994

De Deyne, S., Kenett, Y. N., Anaki, D., Faust, M., & Navarro, D. J. (2016).
Large-scale network representations of semantics in the mental lexicon. In
M. N. Jones (Ed.), Big data in cognitive science: From methods to insights
(pp. 174–202). Taylor & Francis. https://doi.org/10.4324/9781315413570

De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G.
(2019). The “Small World of Words” English word association norms
for over 12,000 cue words. Behavior Research Methods, 51(3),
987–1006. https://doi.org/10.3758/s13428-018-1115-7

DeYoung, C. G., Quilty, L. C., & Peterson, J. B. (2007). Between facets
and domains: 10 aspects of the Big Five. Journal of Personality and
Social Psychology, 93(5), 880–896. https://doi.org/10.1037/0022-3514
.93.5.880

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The
Annals of Statistics, 7(1), 26. https://doi.org/10.1214/aos/1176344552

Elvevåg, B., Foltz, P. W., Rosenstein, M., Ferrer-i-Cancho, R., De Deyne,
S., Mizraji, E., & Cohen, A. (2017). Thoughts about disordered thinking:
Measuring and quantifying the laws of order and disorder. Schizophre-
nia Bulletin, 43(3), 509–513. https://doi.org/10.1093/schbul/sbx040

Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., &
Borsboom, D. (2012). qgraph: Network visualizations of relationships in

psychometric data. Journal of Statistical Software, 48(4), 1–18. https://
doi.org/10.18637/jss.v048.i04

Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in
R. Journal of Statistical Software, 25(5), 1–54. https://doi.org/10.18637/
jss.v025.i05

Fortunato, S. (2010). Community detection in graphs. Physics Reports,
486(3-5), 75–174. https://doi.org/10.1016/j.physrep.2009.11.002

Fried, E. I., & Cramer, A. O. J. (2017). Moving forward: Challenges and
directions for psychopathological network theory and methodology.
Perspectives on Psychological Science, 12(6), 999–1020. https://doi.org/
10.1177/1745691617705892

Goñi, J., Arrondo, G., Sepulcre, J., Martincorena, I., Vélez de Mendizábal,
N., Corominas-Murtra, B., Bejarano, B., Ardanza-Trevijano, S., Peraita,
H., Wall, D. P., & Villoslada, P. (2011). The semantic organization of
the animal category: Evidence from semantic verbal fluency and net-
work theory. Cognitive Processing, 12(2), 183–196. https://doi.org/10
.1007/s10339-010-0372-x

Hills, T. T., & Kenett, Y. N. (2021). Is the mind a network? Maps,
vehicles, and skyhooks in cognitive network science. Topics in Cogni-
tive Science. Advance online publication. https://doi.org/10.1111/tops
.12570

Holmlund, T. B., Cheng, J., Foltz, P. W., Cohen, A. S., & Elvevåg, B.
(2019). Updating verbal fluency analysis for the 21st century: Applica-
tions for psychiatry. Psychiatry Research, 273, 767–769. https://doi.org/
10.1016/j.psychres.2019.02.014

Jun, K.-S., Zhu, X., Rogers, T., Yang, Z., & Yuan, M. (2015). Human
memory search as initial-visit emitting random walk. In C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neu-
ral information processing systems (pp. 1072–1080). NeurIPS Proceed-
ings. https://proceedings.neurips.cc/paper/2015/hash/dc6a70712a2521
23c40d2adba6a11d84-Abstract.html

Karuza, E. A., Thompson-Schill, S. L., & Bassett, D. S. (2016). Local pat-
terns to global architectures: Influences of network topology on human
learning. Trends in Cognitive Sciences, 20(8), 629–640. https://doi.org/
10.1016/j.tics.2016.06.003

Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of
semantic networks in low and high creative persons. Frontiers in Human
Neuroscience, 8, 407. https://doi.org/10.3389/fnhum.2014.00407

Kenett, Y. N., & Austerweil, J. L. (2016). Examining search processes in
low and high creative individuals with random walks. Proceedings of
the 38th annual meeting of the cognitive science society, Austin, TX.
https://cogsci.mindmodeling.org/2016/papers/0066/index.html

Kenett, Y. N., Beaty, R. E., Silvia, P. J., Anaki, D., & Faust, M. (2016).
Structure and flexibility: Investigating the relation between the structure
of the mental lexicon, fluid intelligence, and creative achievement. Psy-
chology of Aesthetics, Creativity, and the Arts, 10(4), 377–388. https://
doi.org/10.1037/aca0000056

Kenett, Y. N., & Faust, M. (2019a). Clinical cognitive networks: A graph
theory approach. In M. S. Vitevitch (Ed.), Network science in cognitive
science (pp. 136–165). Routledge.

Kenett, Y. N., & Faust, M. (2019b). A semantic network cartography of
the creative mind. Trends in Cognitive Sciences, 23(4), 271–274. https://
doi.org/10.1016/j.tics.2019.01.007

Kenett, Y. N., Gold, R., & Faust, M. (2016). The hyper-modular associa-
tive mind: A computational analysis of associative responses of persons
with Asperger syndrome. Language and Speech, 59(Pt. 3), 297–317.
https://doi.org/10.1177/0023830915589397

Kenett, Y. N., Wechsler-Kashi, D., Kenett, D. Y., Schwartz, R. G., Ben
Jacob, E., & Faust, M. (2013). Semantic organization in children with
cochlear implants: Computational analysis of verbal fluency. Frontiers
in Psychology, 4, 543. https://doi.org/10.3389/fpsyg.2013.00543

Kim, N., Kim, J.-H., Wolters, M. K., MacPherson, S. E., & Park, J. C.
(2019). Automatic scoring of semantic fluency. Frontiers in Psychology,
10, 1020. https://doi.org/10.3389/fpsyg.2019.01020

SEMNA TUTORIAL 19

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1146/annurev-clinpsy-050212-185608
https://doi.org/10.1146/annurev-clinpsy-050212-185608
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1080/00221309.1944.10544467
https://doi.org/10.1037/abn0000446
https://doi.org/10.32614/RJ-2018-065
https://doi.org/10.3758/s13428-018-1032-9
https://doi.org/10.3758/s13428-018-1032-9
https://doi.org/10.1002/per.2157
https://doi.org/10.4324/9780203771587
https://doi.org/10.1037/0033-295X.82.6.407
https://doi.org/10.1037/0033-295X.82.6.407
https://doi.org/10.1002/per.1866
https://www.semanticscholar.org/paper/The-igraph-software-package-for-complex-network-Cs/\%C3/\%A1rdi-Nepusz/1d2744b83519657f5f2610698a8ddd177ced4f5c?p2df
https://www.semanticscholar.org/paper/The-igraph-software-package-for-complex-network-Cs/\%C3/\%A1rdi-Nepusz/1d2744b83519657f5f2610698a8ddd177ced4f5c?p2df
https://www.semanticscholar.org/paper/The-igraph-software-package-for-complex-network-Cs/\%C3/\%A1rdi-Nepusz/1d2744b83519657f5f2610698a8ddd177ced4f5c?p2df
https://www.semanticscholar.org/paper/The-igraph-software-package-for-complex-network-Cs/\%C3/\%A1rdi-Nepusz/1d2744b83519657f5f2610698a8ddd177ced4f5c?p2df
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
https://doi.org/10.4324/9781315413570
https://doi.org/10.3758/s13428-018-1115-7
https://doi.org/10.1037/0022-3514.93.5.880
https://doi.org/10.1037/0022-3514.93.5.880
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1093/schbul/sbx040
https://doi.org/10.18637/jss.v048.i04
https://doi.org/10.18637/jss.v048.i04
https://doi.org/10.18637/jss.v025.i05
https://doi.org/10.18637/jss.v025.i05
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1177/1745691617705892
https://doi.org/10.1177/1745691617705892
https://doi.org/10.1007/s10339-010-0372-x
https://doi.org/10.1007/s10339-010-0372-x
https://doi.org/10.1111/tops.12570
https://doi.org/10.1111/tops.12570
https://doi.org/10.1016/j.psychres.2019.02.014
https://doi.org/10.1016/j.psychres.2019.02.014
https://proceedings.neurips.cc/paper/2015/hash/dc6a70712a252123c40d2adba6a11d84-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/dc6a70712a252123c40d2adba6a11d84-Abstract.html
https://doi.org/10.1016/j.tics.2016.06.003
https://doi.org/10.1016/j.tics.2016.06.003
https://doi.org/10.3389/fnhum.2014.00407
https://cogsci.mindmodeling.org/2016/papers/0066/index.html
https://doi.org/10.1037/aca0000056
https://doi.org/10.1037/aca0000056
https://doi.org/10.1016/j.tics.2019.01.007
https://doi.org/10.1016/j.tics.2019.01.007
https://doi.org/10.1177/0023830915589397
https://doi.org/10.3389/fpsyg.2013.00543
https://doi.org/10.3389/fpsyg.2019.01020

Kumar, A. A., Steyvers, M., & Balota, D. A. (2021). A critical review of
network-based and distributional approaches to semantic memory struc-
ture and processes. Topics in Cognitive Science. Advance online publi-
cation. https://doi.org/10.1111/tops.12548

Lange, K. V., Hopman, E. W., Zemla, J. C., & Austerweil, J. L. (2020).
Evidence against a relation between bilingualism and creativity. PLoS
ONE, 15(6), e0234928. https://doi.org/10.1371/journal.pone.0234928

Lerner, A. J., Ogrocki, P. K., & Thomas, P. J. (2009). Network graph anal-
ysis of category fluency testing. Cognitive and Behavioral Neurology,
22(1), 45–52. https://doi.org/10.1097/WNN.0b013e318192ccaf

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10, 707–710.

Li, Y., Kenett, Y. N., Hu, W., & Beaty, R. E. (2021). Flexible semantic
network structure supports the production of creative metaphor. Creativ-
ity Research Journal, 33(3), 209–223. https://doi.org/10.1080/10400419
.2021.1879508

Mandera, P., Keuleers, E., & Brysbaert, M. (in press). Recognition times for
62 thousand English words: Data from the English Crowdsourcing Project.
Behavior Research Methods. https://doi.org/10.31234/osf.io/wm5gv

Mantegna, R. N. (1999). Hierarchical structure in financial markets. The
European Physical Journal B Condensed Matter and Complex Systems,
11(1), 193–197. https://doi.org/10.1007/s100510050929

Massara, G. P., Di Matteo, T., & Aste, T. (2016). Network filtering for big
data: Triangulated maximally filtered graph. Journal of Complex Net-
works, 5, 161–178. https://doi.org/10.1093/comnet/cnw015

McCrae, R. R., & Costa, P. T. (2007). Brief versions of the NEO PI-3.
Journal of Individual Differences, 28(3), 116–128. https://doi.org/10
.1027/1614-0001.28.3.116

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of
South Florida free association, rhyme, and word fragment norms. Behav-
ior Research Methods, Instruments, & Computers, 36(3), 402–407. https://
doi.org/10.3758/BF03195588

Newman, M. E. J. (2006). Modularity and community structure in networks.
Proceedings of the National Academy of Sciences of the United States of
America, 103(23), 8577–8582. https://doi.org/10.1073/pnas.0601602103

Ooms, J. (2018). hunspell: High-performance stemmer, tokenizer, and spell
checker. https://CRAN.R-project.org/package=hunspell

Pakhomov, S. V. S., Eberly, L., & Knopman, D. (2016). Characterizing
cognitive performance in a large longitudinal study of aging with com-
puterized semantic indices of verbal fluency. Neuropsychologia, 89,
42–56. https://doi.org/10.1016/j.neuropsychologia.2016.05.031

Paulsen, J. S., Romero, R., Chan, A., Davis, A. V., Heaton, R. K., & Jeste,
D. V. (1996). Impairment of the semantic network in schizophrenia.
Psychiatry Research, 63(2-3), 109–121. https://doi.org/10.1016/0165
-1781(96)02901-0

Politis, D. N., & Romano, J. P. (1994). Large sample confidence regions
based on subsamples under minimal assumptions. The Annals of Statis-
tics, 22(4), 2031–2050. https://doi.org/10.1214/aos/1176325770

Quirin, A., Cordón, O., Guerrero-Bote, V. P., Vargas-Quesada, B., & Moya-
Anegón, F. (2008). A quick MST-based algorithm to obtain pathfinder net-
works (1, n - 1). Journal of the American Society for Information Science
and Technology, 59(12), 1912–1924. https://doi.org/10.1002/asi.20904

Rastelli, C., Greco, A., & Finocchiaro, C. (2020). Revealing the role of di-
vergent thinking and fluid intelligence in children’s semantic memory
organization. Journal of Intelligence, 8(4), 43. https://doi.org/10.3390/
jintelligence8040043

Rinker, T. W. (2020). qdap: Quantitative discourse analysis package.
https://github.com/trinker/qdap

Schvaneveldt, R. W. (1990). Pathfinder associative networks: Studies in
knowledge organization. Ablex Publishing.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software

environment for integrated models of biomolecular interaction networks.
Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303

Shao, J. (2003). Impact of the bootstrap on sample surveys. Statistical Science,
18(2), 191–198. https://doi.org/10.1214/ss/1063994974

Siew, C. S. Q. (2013). Community structure in the phonological network.
Frontiers in Psychology, 4, 553. https://doi.org/10.3389/fpsyg.2013.00553

Siew, C. S. Q. (2019). spreadr: An R package to simulate spreading activa-
tion in a network. Behavior Research Methods, 51(2), 910–929. https://
doi.org/10.3758/s13428-018-1186-5

Siew, C. S. Q., Wulff, D. U., Beckage, N. M., Kenett, Y. N., & Meštrovi�c,
A. (2019). Cognitive network science: A review of research on cognition
through the lens of network representations, processes, and dynamics.
Complexity, 2019, 1–24. https://doi.org/10.1155/2019/2108423

Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust, F.,
Awtrey, E., Bahník, Š., Bai, F., Bannard, C., Bonnier, E., Carlsson, R.,
Cheung, F., Christensen, G., Clay, R., Craig, M. A., Dalla Rosa, A., Dam,
L., Evans, M. H., Flores Cervantes, I., . . . Nosek, B. A. (2018). Many
analysts, one data set: Making transparent how variations in analytic
choices affect results. Advances in Methods and Practices in Psychologi-
cal Science, 1(3), 337–356. https://doi.org/10.1177/2515245917747646

Stella, M., Beckage, N. M., Brede, M., & De Domenico, M. (2018). Multi-
plex model of mental lexicon reveals explosive learning in humans. Sci-
entific Reports, 8(1), 2259. https://doi.org/10.1038/s41598-018-20730-5

Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of seman-
tic networks: Statistical analyses and a model of semantic growth. Cognitive
Science, 29(1), 41–78. https://doi.org/10.1207/s15516709cog2901_3

Tumminello, M., Aste, T., Di Matteo, T., & Mantegna, R. N. (2005). A
tool for filtering information in complex systems. Proceedings of the
National Academy of Sciences of the United States of America, 102(30),
10421–10426. https://doi.org/10.1073/pnas.0500298102

Unsworth, N., Spillers, G. J., & Brewer, G. A. (2011). Variation in verbal
fluency: A latent variable analysis of clustering, switching, and overall
performance. Quarterly Journal of Experimental Psychology, 64(3),
447–466. https://doi.org/10.1080/17470218.2010.505292

van Wijk, B. C. M., Stam, C. J., & Daffertshofer, A. (2010). Comparing
brain networks of different size and connectivity density using graph
theory. PLoS ONE, 5(10), e13701. https://doi.org/10.1371/journal
.pone.0013701

Viger, F., & Latapy, M. (2016). Efficient and simple generation of random
simple connected graphs with prescribed degree sequence. Journal of
Complex Networks, 4(1), 15–37. https://doi.org/10.1093/comnet/cnv013

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’
networks. Nature, 393(6684), 440–442. https://doi.org/10.1038/30918

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis.
Springer. https://ggplot2-book.org/

Wulff, D. U., De Deyne, S., Jones, M. N., Mata, R., & Aging Lexicon
Consortium. (2019). New perspectives on the aging lexicon. Trends in
Cognitive Sciences, 23(8), 686–698. https://doi.org/10.1016/j.tics.2019
.05.003

Wulff, D. U., Hills, T., & Mata, R. (2018). Structural differences in the
semantic networks of younger and older adults. PsyArXiv. https://doi
.org/10.31234/osf.io/s73dp

Zemla, J. C., & Austerweil, J. L. (2018). Estimating semantic networks of
groups and individuals from fluency data. Computational Brain &
Behavior, 1(1), 36–58. https://doi.org/10.1007/s42113-018-0003-7

Zemla, J. C., Cao, K., Mueller, K. D., & Austerweil, J. L. (2020). SNAFU:
The semantic network and fluency utility. Behavior Research Methods,
52(4), 1681–1699. https://doi.org/10.3758/s13428-019-01343-w

Received December 6, 2020
Revision received August 17, 2021

Accepted October 18, 2021 n

20 CHRISTENSEN AND KENETT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1111/tops.12548
https://doi.org/10.1371/journal.pone.0234928
https://doi.org/10.1097/WNN.0b013e318192ccaf
https://doi.org/10.1080/10400419.2021.1879508
https://doi.org/10.1080/10400419.2021.1879508
https://doi.org/10.31234/osf.io/wm5gv
https://doi.org/10.1007/s100510050929
https://doi.org/10.1093/comnet/cnw015
https://doi.org/10.1027/1614-0001.28.3.116
https://doi.org/10.1027/1614-0001.28.3.116
https://doi.org/10.3758/BF03195588
https://doi.org/10.3758/BF03195588
https://doi.org/10.1073/pnas.0601602103
https://CRAN.R-project.org/package=hunspell
https://doi.org/10.1016/j.neuropsychologia.2016.05.031
https://doi.org/10.1016/0165-1781(96)02901-0
https://doi.org/10.1016/0165-1781(96)02901-0
https://doi.org/10.1214/aos/1176325770
https://doi.org/10.1002/asi.20904
https://doi.org/10.3390/jintelligence8040043
https://doi.org/10.3390/jintelligence8040043
https://github.com/trinker/qdap
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1214/ss/1063994974
https://doi.org/10.3389/fpsyg.2013.00553
https://doi.org/10.3758/s13428-018-1186-5
https://doi.org/10.3758/s13428-018-1186-5
https://doi.org/10.1155/2019/2108423
https://doi.org/10.1177/2515245917747646
https://doi.org/10.1038/s41598-018-20730-5
https://doi.org/10.1207/s15516709cog2901_3
https://doi.org/10.1073/pnas.0500298102
https://doi.org/10.1080/17470218.2010.505292
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1093/comnet/cnv013
https://doi.org/10.1038/30918
https://ggplot2-book.org/
https://doi.org/10.1016/j.tics.2019.05.003
https://doi.org/10.1016/j.tics.2019.05.003
https://doi.org/10.31234/osf.io/s73dp
https://doi.org/10.31234/osf.io/s73dp
https://doi.org/10.1007/s42113-018-0003-7
https://doi.org/10.3758/s13428-019-01343-w

	Semantic Network Analysis (SemNA): A Tutorial on Preprocessing, Estimating, and Analyzing Semantic Networks
	Semantic Networks Estimated From Verbal Fluency Data
	Getting Started With the SemNA Pipeline in R
	Preprocessing Verbal Fluency Data
	SemNetDictionaries Package
	Predefined Dictionaries
	Custom Dictionaries
	Moniker Glossaries
	Crowdsourcing Dictionary and Moniker Glossaries

	SemNetCleaner Package
	Spell-Check
	Textcleaner Output
	Exporting Preprocessed Data

	Summary

	Estimating Semantic Networks
	SemNeT Shiny Application
	Network Estimation Methods
	Community Network
	Naïve Random Walk
	Pathfinder Network
	Correlation-Based Networks

	Estimating Networks in the SemNeT Shiny Application
	Exporting Networks
	Summary

	Analyzing Semantic Networks
	Global Network Measures
	Statistical Tests
	Random Network Analyses
	Bootstrap Analyses

	Shiny Results Output
	Summary

	SemNA and SNAFU Comparison
	Discussion
	Best Practices and Open Questions
	SemNA Future Directions
	Conclusion

	References

