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A B S T R A C T

While global image properties (GIPs) relate to preference ratings in many categories of visual stimuli, this re-
lationship is typically not seen for abstract art paintings. Using computational network science and empirical
methods, we further investigated GIPs and subjective preferences. First, we replicated the earlier observation
that GIPs do not relate to preferences for abstract art. Next, we estimated the network structure of abstract art
paintings using two approaches: the first was based on verbal descriptions and the second on GIPs. We examined
the extent to which network measures computed from these two networks (1) related to preference for abstract
art paintings and (2) determined affiliation of images to specific art styles. Only semantic-based network pre-
dicted the subjective preference ratings and art style. Finally, preference and GIPs differed for sub-groups of
abstract art paintings. Our results demonstrate the importance of verbal descriptors in evaluating abstract art,
and that it is not useful in empirical aesthetics to treat abstract art paintings as a single category.

1. Introduction

Until the early 20th century, art paintings typically representated
the external world (people, landscapes, animals and still life). Perhaps
because of the advent of photography, some artists began to create
paintings without reference to real-world objects. While rejected in-
itially, these abstract art paintings are now common displayed in art
galleries. Nevertheless, people with little exposure to the arts prefer
representational paintings over abstract paintings (Cattaneo et al.,
2015). Furthermore, people are more consistent in their preference
ratings for representational art than abstract art paintings (Brinkmann,
Commare, Leder, & Rosenberg, 2014; Vessel & Rubin, 2010). The
question arises: Why do preferences for abstract art paintings vary
across people? To tackle this question, we tested two hypotheses: (1)
subjective verbal descriptions of visual stimuli influence people’s pre-
ferences; (2) objective psychophysical properties of visual images in-
fluence people’s preference. We applied correlational and computa-
tional methods to investigate how people vary in their preference for
abstract art paintings.

1.1. Verbal descriptions and evaluations of art paintings

People can verbalize their impression of visual stimuli. The terms
most often associated with aesthetics are ‘beauty’ and ‘ugly’ (Jacobsen,
Buchta, Köhler, & Schröger, 2004). For visual art, ‘beautiful’, ‘ugly’,
‘colorful’ and ‘abstract’ are used most frequently (Augustin, Wagemans,
& Carbon, 2012). One can further differentiate between verbal de-
scriptions (i.e., terms that characterize the stimulus) and verbal eva-
luations (i.e., terms that refer to subjective impressions evoked by the
stimulus). Marković and Radonjić (2008) asked participants to label
eight images, mostly representative art paintings from different art
styles, and found correlations between verbal descriptions (e.g., form,
color) and evaluations (e.g., pleasantness, interestingness). Similarly, in
a study of abstract art paintings, Lyssenko, Redies, and Hayn-
Leichsenring (2016) found that verbal descriptive (‘structure’) corre-
lated with evaluative (‘interestingness’) ratings.

1.2. Global image properties and evaluation of images

Formalist approaches focus on objective psychophysical image
properties. One family of such objective properties is Global Image
Properties (GIP), i.e. objective features that refer to the entire image
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rather than its components. GIPs apply higher-order statistics to the
image. Examples of GIP measures are fractality, self-similarity, overall
complexity, overall anisotropy and overall color values. GIPs can be
used to categorize images. For instance, photographs of natural scenes
are typically more self-similar than visual artworks, cartoons, photo-
graphs of objects and photographs of faces (Amirshahi, Koch, Denzler,
& Redies, 2012). Also, distinct patterns of GIPs are found for specific
styles of representative art (Hayn-Leichsenring, Lehmann, & Redies,
2017).

If psychophysical properties of visual images can influence people’s
preference, then GIPs would be a plausible candidate measure to cor-
relate with subjective evaluations within image categories. The most
commonly tested subjective evaluation is preference. People prefer face
photographs with lower self-similarity and lower complexity (Menzel,
Hayn-Leichsenring, Langner, Wiese, & Redies, 2015). They prefer less
self-similar landscape paintings, still life, portrait paintings and paint-
ings of urban scenes, and less complex portrait paintings (Hayn-
Leichsenring et al., 2017).

If psychophysical properties influence people’s preference, GIPs
should also correlate with preference ratings in abstract art paintings.
We might expect these correlations to be especially robust since ab-
stract art paintings lack figurative content. Therefore, objective psy-
chophysical properties are the main source on which preferences might
be based within these stimuli. While GIPs correlate with verbal de-
scritions in abstract art paintings (e.g., self-similarity correlates with
subjective ‘complexity’ and ‘structured’ ratings), they do not appear to
correlate with preference (Lyssenko et al., 2016; Mallon, Redies, &
Hayn-Leichsenring, 2014).

One potential explanation for the lack of relation between GIPs and
preference for abstract art is that people’s taste for these paintings
varies. If people are segregated based on their preferences for certain
abstract art paintings, GIPs correlate with preference ratings in abstract
art paintings (Mallon et al., 2014). Another possibility is that abstract
art paintings are not a single category. Perhaps GIPs relate to people’s
preferences for abstract art paintings when considering only a sub-set of
abstract art paintings. In a study that only focused on abstract art
paintings by a single artist (Christoph Redies), self-similarity correlated
negatively with ratings of ‘interestingness’ (evaluative), and complexity
correlated negatively with ratings of ‘harmony’ (evaluative) (Redies,
Brachmann, & Hayn-Leichsenring, 2015).

The evidence for the relationship of GIPs to evaluations of abstract
art paintings is mixed. Here, we revisit this issue using network science,
to examine the relation between verbal descriptions, GIPs and pre-
ference ratings for abstract art paintings.

1.3. Network science

Computational tools from network science have been applied re-
cently to study cognitive and psychological constructs (Christensen,
Kenett, Aste, Silvia, & Kwapil, 2018; Epskamp, Maris, Waldorp, &
Borsboom, 2015; Siew, Wulff, Beckage, & Kenett, 2019). This approach
is based on mathematical graph theory, providing quantitative methods
to investigate complex systems as networks (Barabási, 2016). A net-
work is comprised of nodes, that represent the basic unit of the system
(e.g., an abstract art image) and links, or edges, that signify the rela-
tions between the nodes (e.g. GIP-based or verbal descriptor-based si-
milarity).

Recent network science methods have investigated cognitive phe-
nomena such as the structure of language and memory (Baronchelli,
Ferrer-i-Cancho, Pastor-Satorras, Chater, & Christiansen, 2013; Borge-
Holthoefer & Arenas, 2010; Siew, Wulff, Beckage, & Kenett, 2019).
Cognitive networks, for example, have identified mechanisms of lan-
guage development (Hills, Maouene, Maouene, Sheya, & Smith, 2009;
Steyvers & Tenenbaum, 2005), shown that specific network parameters
influence memory retrieval (Vitevitch, Chan, & Roodenrys, 2012;
Vitevitch, Chan, & Goldstein, 2014; Vitevitch, Goldstein, & Johnson,

2016), related network parameters to individual differences in crea-
tivity (Kenett & Faust, 2019), and provided new insight into the se-
mantic structure of second languages in bilinguals (Borodkin, Kenett,
Faust, & Mashal, 2016).

Here, we used verbal descriptors of different abstract art paintings
to estimate a semantic-based network of the relations between such
abstract art paintings (Siew et al., 2019). Similarly, we used GIPs to
estimate a GIP-based network of the relation between the same abstract
art paintings. We examined how properties of both networks relate to
preference ratings of abstract art paintings. This analysis allowed us to
quantitatively examine how verbal descriptions or GIPs relate to par-
ticipant’s preferences for these abstract art paintings. This approach
further allowed us to examine how the abstract art paintings in both
networks cluster into sub-groups based on a data-driven approach and
how these sub-groups relate to art styles. Thus, this computational
network approach allows us to directly examine our two hypotheses
regarding the relationship between GIPs, verbal descriptors and pre-
ference for abstract art paintings.

1.4. Aim of the studies

In Study 1, we aimed to replicate previous findings that show that
figurative visual stimuli correlate with GIPs, but abstract art paintings
do not. We correlated GIPs with preference ratings for nine different
stimuli sets (houses, faces, etc.), including abstract art paintings. In
Study 2, we re-analyzed verbal descriptions and GIPs of abstract art
paintings – data collected by Lyssenko et al. (2016) – using a compu-
tational network analysis. This analysis allowed us to examine how
properties of the network based on verbal desciptions and the network
based on GIPs relate to preferences for abstract art paintings. Such an
analysis further allowed us to computationaly examine how abstract art
paintings cluster into sub-groups (Siew et al., 2019), and whether se-
mantic-based and GIP-based clusters relate to culturaly and historically
defined art styles. In Study 3, motivated by sub-groups identified in
Study 2, we conducted a more constrained examination of the re-
lationship between GIPs and preferences in abstract art paintings pro-
duced by specific artists.

2. Study 1

2.1. Introduction

In Study 1, we aimed to replicate the results of previous studies
(Hayn-Leichsenring et al., 2017; Lyssenko et al., 2016; Mullin, Hayn-
Leichsenring, Redies, & Wagemans, 2017) on the relation between GIPs
and preference ratings across various image categories. We analyzed
nine different categories of images (face photographs, art portraits,
cars, landscape photographs, landscape paintings, landscape drawings,
house facades, magazine cover, photos of art installations and abstract
art paintings). We predicted that for abstract art paintings, GIPs would
correlate poorly with preference ratings, while correlations would be
found for other image categories.

2.2. Methods

2.2.1. Participants
Sixty-six participants participated in the study. Six participants were

excluded from the original group because of data collection issues
leaving sixty participants in the final dataset (18–31 years; M=23.1
years [SD=3.0]; 14 male). The study was approved by the ethics
committee of the Universitätsklinikum Jena. Participants stated their
consent by signing a consent form.

2.2.2. Stimuli
We used nine types of images (cars, house facades, magazine cover,

face photographs, art portraits, landscape photographs, landscape
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drawings, landscape paintings, photos of art installations and color
abstract art paintings). Each category contained 100 images, except for
the car category, which had 96 images. Cars, house facades and ma-
gazin covers were taken from Braun, Amirshahi, Denzler and Redies
(2013), face photographs were randomly selected from the FACES da-
tabase (Ebner, Riediger, & Lindenberger, 2010), art portraits and
landscape paintings were a subset from the JenAesthetics database
(Amirshahi, Denzler, & Redies, 2013), landscape photographs and
landscape drawings were taken randomly from a database established
by Redies, Hasenstein, and Denzler (2007), photos of art installations
were collected online for a previous study (Schulz & Hayn-Leichsenring,
2017) and images of abstract art were taken randomly from a database
established by Mallon et al. (2014).

2.2.3. Global image properties
For each of the images, we computed the following Global Image

Properties (GIPs) with MATLAB (Amirshahi et al., 2012): Pyramidal
Histogram of Gradients Self-Similarity, Histogram of Gradients Com-
plexity, Histogram of Gradients Anisotropy, color hue, color saturation,
color value, and aspect ratio. In the following paragraphs, these mea-
sures will be explained briefly.

2.2.3.1. Pyramidal histogram of oriented gradients (PHOG) self-
similarity. A Histogram of Oriented Gradients (HOG) is created for
every image. In these histograms, the mean strength of the luminance
gradients is binned in 16 equally sized orientations (Dalal & Triggs,
2005). This GIP measure is used to compute the self-similarity of an
image, by comparing the HOG from the entire image with HOGs from
equal subparts of the image (Bosch, Zisserman, & Munoz, 2007). The
image is divided into 4 (level 1), 16 (level 2) and 64 (level 3) rectangles
of similar size. Then, the HOG features of the entire image (level 0) are
compared with the HOG features of the sub-images (levels 1–3) using
the Histogram Intersection Kernel (Amirshahi et al., 2012). Self-
similarity in this sense implies that an object as a whole is similar to
its parts (Braun, Amirshahi, Denzler, & Redies, 2013). Higher values of
this measure stand for greater self-similarity. An example of an abstract
art painting with high self-similarity is Gerhard Richter’s “4096 Farben”
– a painting consisting of 4096 similar-sized squares of different colors.
In contrast, e.g., Morris Loius’ “Gamma Tau” – a largely white canvas
with colorful angular lines on the far sides – has low self-similarity.

2.2.3.2. Histogram of gradients (HOG) complexity. The complexitiy of an
image can be measured in different ways. Here, we applied a measure
based on gradient strength. Image gradients represent changes of
lightness). Thus, the mean norm of the gradients across all
orientations in the image was used as an estimate for image
complexity (HOG complexity; Braun et al., 2013). Higher values in
HOG complexity relate to higher overall strength of gradient and,
therefore, higher objective complexity (e.g., the image appears to be
more detailed). An example of an abstract art painting with high
complexity is Jean Dubuffet’s “Site Inhabited by Objects” – a painting
with various flat interlocking shapes. In contrast, e.g., Ad Reinhardt’s
“Abstract painting No. 5″ – a black square on white ground – possesses
low complexity.

2.2.3.3. HOG anisotropy. Anisotropy is a measure of the heterogeneity
of luminance gradients in an image, which we measure as the
distribution of orientation of gradients within an image. In these
histograms, we binned the mean strength of orientation gradients in
16 equally-sized bins. Then, we compared the mean strength for every
gradient orientation (Braun et al., 2013). High values in anisotropy
imply that one or few orientations of gradients are more prominent
than others in the HOGs. In contrast, low values indicate a rather
uniformly distributed luminance gradient across all orientations
(Redies, Amirshahi, Koch, & Denzler, 2012). An example for an
abstract art painting with high anisotropy is Frank Stella’s “Hyena

Stomp” – a very colorful paintings consisting of straight stripes. In
contrast, e.g., Yves Klein’s “Cosmogonie de l’orage” – a blue pattern
with sprinkles of various sizes and orientations – possesses low
anisotropy.

2.2.3.4. Color measures (hue, saturation, value). For global color
measures we used hue, saturation and value (HSV) (Smith, 1978) to
characterize the images. Color hue refers to the pure spectrum colors
(the degree to which a stimulus can be described as similar or different
from red/green/blue/yellow); color saturation describes the intensity/
purity of the color; color value is a measure for the relative lightness/
darkness of a color.

2.2.3.5. Aspect ratio. The aspect ratio of an image is calculated by
dividing image height by image width. While there seems to not be an
overall preference for a certain aspect ratio in paintings (McManus,
1980; Russell, 2000), certain subject matters are preferred in certain
aspect ratios (e.g., portrait paintings in upright format, landscape
paintings in landscape format; Hayn-Leichsenring et al., 2017).

2.2.4. Statistical analysis
We calculated Pearson’s r coefficients for the correlation of pre-

ference ratings with seven GIPs for each of the image categories, cor-
rected for multiple comparisons.

2.2.5. Procedure
Because of the length of the experiment, we divided the sixty par-

ticipants into three groups (twenty participants per group). Each group
rated three or four categories of stimuli in randomized order. The first
group rated cars, house facades, art portraits (on their attractiveness)
and landscape drawings. The second group rated magazine covers,
landscape photographs, photographs of art installations and abstract art
paintings. The third group of participants rated face photographs, art
portraits (on their beauty) and landscape paintings. Aesthetic responses
occur rapidly, consistently and automatically (Mullin et al., 2017).
Therefore, we used a short presentation time of 50ms (we also per-
formed the same experiment with a presentation time of 3000ms,
leading to similar results). The order of the images was randomized
within category. After image presentation, a random-phase Fourier
mask (1000ms) was shown to avoid afterimages. Since art portraits can
elicit two types of hedonic responses (namely the attractiveness of the
depicted person and the beauty of the painting itself, see Schulz &
Hayn-Leichsenring, 2017), the art portraits assesment was run in two
trials by different groups of participants. The first group rated images
for attractiveness of the person being depicted, the second group rated
images for beauty of the image. While this distinction between the at-
tractiveness of the object being depicted and the beauty of the image
itself applies to any figurative image, all other kinds of stimuli were
rated only on overall preference. For every rating, we used a continuous
scale (100 points) from “not beautiful” (German “nicht schön”) to
“beautiful” (German: “schön”) or “not attractive (German: “nicht at-
traktiv”) to “attractive” (German: “attraktiv).

2.3. Results

We computed correlations for each of set of stimuli between the
seven different GIPs and mean values across participants. Based on
previous studies (Braun et al., 2013; Menzel et al., 2015; Redies et al.,
2007), magazine covers, face photographs, landscape photographs and
landscape drawings were presented in grayscale. Therefore, color
measured (hue, saturation and value) were not calculated for these
stimuli. There are no aspect ratio correlations for face photographs,
cars, landscape photographs and magazine covers, because the images
were square.

We found different correlations of preference ratings with GIPs for
the respective stimuli sets (see Fig. 1). For instance, ratings of
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landscapes correlated negatively with self-similarity, r = -0.38, p <
.001. This result is in line with previous studies (Mullin et al., 2017). In
contrast, more self-similar house facades were preferred, r= .21, p <
.001. There were no correlations of preference ratings with GIPs for
abstract art paintings (see Supplemental Table 1 for detailed results on
both presentation times and see Supplemental Table 2 for significant
differences of Pearson’s r values between abstract art and the other
stimulus sets).

2.4. Discussion

Study 1 showed that preference ratings correlated with GIPs for
figurative images (face photographs, portrait paintings, cars, landscape
paintings, landscape drawings, house facades, magazine covers and art
installations), but not for abstract art paintings. Although this finding is
in line with previous studies (Hayn-Leichsenring et al., 2017; Lyssenko
et al., 2016; Mullin et al., 2017), it remains surprising. As mentioned
before, one would predict that the lack of figurative content in abstract
art paintings might lead to a higher influence of form (as represented by
GIPs) on preference ratings.

3. Study 2

3.1. Introduction

In Study 2 we further explored the relation between GIPs, verbal
descriptors and preferences for abstract art paintings. We applied a
computational network science approach to estimate semantic-based
and GIP-based networks of abstract art paintings and examined how

properties of these networks relate to preference ratings of these
paintings. Such analysis allowed us to compare the role of verbal de-
scriptors and GIPs in how people prefer abstract art paintings.
Furthermore, such a quantitative approach allowed us to examine if
these abstract art paintings organize into clusters which relate mean-
ingfully to art styles.

To this aim, we re-analyzed previously collected behavioral data
and GIPs of abstract art paintings. Lyssenko et al. (2016) collected
behavioral data (verbal descriptions AND preference ratings) and GIPs
of abstract art paintings. We used our semantic-based and GIP-based
network analysis of the data collected by Lyssenko et al. (2016) to
examine whether (subjective) verbal descriptors and (objective) GIPs
relate differently to subjective preferences.

3.2. Method

3.2.1. Participants
We reanalyzed data collected by Lyssenko et al. (2016) who per-

formed two separate studies. Their first study ('Description') enrolled 19
participants (19–37 years; Mean=22.8 years; 13 female). Their second
study ('Rating') enrolled 42 participants (19–31 years, Mean= 23.5
years; 28 female). The original study was approved by the ethics
committee of the Universitätsklinikum Jena. The participants stated
their consent by signing a consent form.

3.2.2. Stimuli
The stimuli included 79 images of abstract art paintings taken from

a dataset of 150 images of abstract art paintings compiled by Mallon
et al. (2014). The paintings were categorized by art style (Action

Fig. 1. Pearson’s r coefficients for the correlation of preference ratings (presentation time =50ms) with GIPs across the different datasets. * = p < .05, Bonferroni-
corrected. n.c.: GIP not calculated for this category. Bars indicate confidence intervals.
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Painting, Color Field Painting, Constructivism, Suprematism, and
Other). We assigned paintings and/or artists to specific art periods
based on various publications on abstract art (Böthig & Hayn-
Leichsenring, 2017). The assignment to art styles was used to determine
if network clustering analysis followed these cultural and historical
stylistic categories.

3.2.3. Global image properties
We calculated the same GIPs as in Study 1 (self-similarity, com-

plexity, anisotropy, color hue, color saturation, color value and aspect
ratio). These seven GIPs were used in the original study by Lyssenko
et al. (2016).

3.2.4. Verbal descriptors and preference
3.2.4.1. Description. Participants sat in front of a computer screen and
saw each painting for 30 s. They were instructed to verbally describe
the 79 paintings by producing (German) adjectives that characterized
the displayed image of a particular abstract art painting. These
adjectives were written down by the experimenter.

3.2.4.2. Rating. Participants saw each image for 3 s and rated them on
five different scales (complexity, structure, emotion, interest, and
preference). However, for the present study, we only used the
preference ratings (‘do not like’ (gefällt mir nicht) to ‘like’ (gefällt
mir)) as the dependent variable in our analyses.

For a detailed description of the procedure, see Lyssenko et al.
(2016).

3.2.5. Network estimation
The semantic-based and GIP-based networks were estimated using a

network approach developed to analyze free association data (Kenett,
Anaki, & Faust, 2014). According to this approach, each node re-
presents an image and edges between nodes represents the association
between two images. These associations represent the similarity profiles
across any pair of images. For the semantic-based network, such a si-
milarity profile represents the overlap of adjectives generated by the
sample to each of the images. For the GIP-based network, such a si-
milarity profile represents the overlap of the seven GIP measures
computed for each of the image.

The networks were estimated in the following way: First, both data
matrices (semantic and GIP) were structured with each column as an
image, and each row as a unique variable (adjective descriptor or GIP).
Thus, each cell denotes a value for a specific unique variable i to an
image j. For the semantic-based matrix, each cell denotes how many
participants generated unique adjective i to image j. For the GIP-based
matrix, each cell denotes the value of the unique GIP i to image j.
Second, the correlation between any pair of images for both types of
networks was calculated using Pearson’s correlation. This resulted in a
79×79 matrix where each cell denotes the semantic/GIP correlation
between node i and node j.

Finally, many edges have small values or weak associations, re-
presenting noise in the network. To minimize noise and possible spur-
ious associations, we applied a planar maximally filtered graph filter to
remove spurious correlations (Christensen et al., 2018; Kenett et al.,
2014; Tumminello, Aste, Di Matteo, & Mantegna, 2005). This approach
retains the same number of edges between the groups and avoids the
confound of different network structures arising from different number
of edges (Christensen et al., 2018; van Wijk, Stam, & Daffertshofer,
2010). Thus, the networks constructed by this approach can be com-
pared directly because they have the same number of nodes and edges.
To examine the structure of the networks, the edges are binarized so
that all edges are converted to a uniform weight (i.e., 1). Although the
networks could be analyzed using weighted edges (weights equivalent
to the similarity strength), this potentially adds noise to the inter-
pretation of the structure of the network. Thus, the networks are ana-
lyzed as unweighted (all weights are treated as equal) and undirected

(bidirectional relations between nodes) networks.

3.2.6. Network analyses
Analyses were performed with the Brain Connectivity Toolbox for

MATLAB (Rubinov & Sporns, 2010). The clustering coefficient (CC;
measuring network connectivity), the average shortest path length
(ASPL; measuring global distances), and modularity (Q; measuring
communtity structure) were calculated (Fortunato, 2010; Newman,
2006; Siew et al., 2019).

The clustering coefficient of a node refers to the extent that two
neighbors of a node will themselves be neighbors (i.e., a neighbor is a
node i that is connected through an edge to node j). Thus, a higher CC
relates to higher overall connectivity in the network. In semantic net-
works, such connectivity denotes the similarity between concepts, and
can be similarly applied in GIP-based networks. The ASPL refers to the
average shortest number of steps (i.e., edges) needed to traverse be-
tween any pair of nodes, e.g., the higher the ASPL, the more spread out
a network is. Previous research at the semantic level have shown that
ASPL between concepts in semantic networks corresponds to partici-
pants judgments whether two concepts are related to each other
(Kenett, Levi, Anaki, & Faust, 2017). The network’s CC and ASPL were
evaluated qualitatively against the equivalent parameters in a random
network with the same number of nodes and edges (CCrand and AS-
PLrand, respectively). The modularity (Q) measure identifies how a
network breaks apart (or partitions) into smaller sub-networks or
communities (Fortunato, 2010; Newman, 2006). The modularity statistic
(Q) measures the extent to which the network has dense connections
between nodes within a community and sparse (or few) connections
between nodes in different communities. Thus, the higher Q is, the
more the network breaks apart to subcommunities. Such sub-
communities can be subcategories in a semantic network, or clusters of
artstyles in an image network.

3.2.7. Relating network measures to abstract art paintings preference
To examine how well the semantic- and GIP- based networks relate

to preferences, we computed local network measures from both net-
works and related them to preference ratings of the images. Local
network measures are computed for each of the nodes in both networks
and included the local clustering coefficient, the local average shortest
path length, degree, betweenness centrality, eigenvector centrality, and
core/periphery. The local clustering coefficient (Ci), which is the average
of each node’s clustering coefficient vector (Christensen et al., 2018).
The local average shortest path length (ASPLi) is the average distance for
each node to all other nodes (Christensen et al., 2018). Betweenness
centrality (BC) measures the extent a node lies on the paths between
other nodes (Freeman, 1977). Therefore, nodes with high betweenness
values make up the most central elements or “backbone” of the network
(Borgatti, 2005). Degree (k), the number of connections a node has, is a
basic measure of a node’s importance, and its distribution reveals im-
portant information about the type of network. Eigenvector centrality
(EC) is the weighted sum of direct and indirect connections of a node
and is an index of the quality of connections for each node (Bonacich &
Lloyd, 2001). For example, the EC distinguishes a node of low degree
that is connected to many high degree nodes and a high degree node
that is connected to only low degree nodes (Bonacich, 2007). Thus,
higher EC values are given to nodes that have connections to other
central nodes (van Borkulo et al., 2015). Core/periphery measures
whether node i is in the core or periphery of the network (Borgatti &
Everett, 2000).

3.2.8. Community analysis
Finally, we conducted community detection analyses to examine

how well the images (nodes) in the network cluster into well-defined
artistic style. To do so, we use a data driven approach to determine
community assignment of each node in both networks (Betzel et al.,
2017). We applied a modularity maximization approach that aims to
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partition a network into communities. This approach uses the Louvain
modularity method, a greedy stochastic method (Lancichinetti &
Fortunato, 2009). Given the stochasticity of this method, the applica-
tion of the Louvain modularity method is reiterated 1,000 times
(Bassett et al., 2011). To resolve the variability across the 1,000 itera-
tions of the community assignment partitions, a consensus analysis is
conducted to identify the community assignment partition that sum-
marizes the commonailities across the entire distribution of partitions
(Betzel et al., 2017; Lancichinetti & Fortunato, 2012). The results of this
process are data-driven consenses-based identified communities for
each of the networks and community assignment of each of the images
(nodes) in the network to a specific community.

Then, we calculated the mean values for GIPs and the preference
ratings on the various scales of the images from single communities for
both the semantic-based and the GIP-based networks. We used the
standard deviation of the values as an indicator for how much they
differ. Then, we calculated Pearson’s r coefficients for correlations be-
tween GIPs and mean preference ratings for the single communities of
the semantic-based cluster and compared them with correlation coef-
ficients over all images.

3.3. Results

Participants generated a total of 4447 adjectives (1447 unique ad-
jectives) to describe the images. There were on average 56.29 adjectives
per image (or 2.96 adjectives per image per participant). The verbal
descriptions of the images and the GIPs of the images were used to
estimate semantic-based and GIP-based networks, as described above
(Table 1). To visualize the networks (Fig. 2), we applied the force-di-
rected layout of the Cytoscape software (Shannon et al., 2003). In these
2D visualizations, nodes are represented by the respective images and
edges between them are represented by lines. Since these networks are
undirected and weighted, the edges convey symmetrical (i.e., bidirec-
tional) similarities between two nodes.

Next, we computed the local level network measures for all nodes in
both networks, as described above. We then conducted a Pearson’s
correlation analysis to examine the relation of each of the local level
network measures in both networks and the preference ratings of all
images. This analysis was conducted for each network separately. This
analysis revealed only a marginal positive correlation between the local
ASPL measures in the semantic-based network and the preference rat-
ings of the images, r= .22, p= .057, 95 % confidence interval −0.006
to .437 (Fig. 3): The further a node was from all other nodes in the
network, the higher the preference rating it received. Thus, the more
distinctive an image is from other images in the semantic-based net-
work, the more it was preferred.

Finally, we computed the consensus community assignment parti-
tion for both networks, as described above. This analysis identified six
communities in both networks, with different node assignment into
these communities. We then calculated the mean values of GIPs
(Supplemental Table 4) and preference ratings (Supplemental Table 5)
for each community of both networks. We found that the semantic-

based network was better in separating preference ratings (i.e., ratings
that were acquired from different participants than the verbal de-
scriptions).

The designation of art styles permits the grouping of abstract art
painting into related sub-groups (Fernie, 1995). We categorized the
images by art styles and investigated whether images from the same art
style are assigned to the same community (Table 2, see also Böthig &
Hayn-Leichsenring, 2017). The semantic-based network was better at
differentiating art styles (represented by higher standard deviations of
the distribution to communities; mean value for the SDSemantic = 2.63,
mean SDGIP= 1.47). This worked especially well for Action Paintings.
Thirteen of the twenty Action Paintings were assigned to one particular
community (C2). The differentiation worked moderately for Suprema-
tism and Constructivism in GIP-based network.

We investigated whether the images in the different communities
exhibit different correlation patterns between GIPs and preference
ratings (Fig. 4). While this analysis revealed several weak to medium
correlations (Pearson’s r up to .8), none of these correlations survived
corrections for multiple comparisons (Fig. 4). The low number of
images per community (5–25) might have prevented identifying true
correlations, even though the tendencies hinted at possible associations.

3.4. Discussion

We applied computational network science methods to examine the
roles of verbal descriptors and GIPs in people’s preferences for abstract
art paintings by estimating semantic-based and GIP-based networks and
examining how properties of these networks related to preferences.
Verbal descriptions correlated with GIPs (Lyssenko et al., 2016). We
only found marginal correlations between the local distance measure
(measuring how many steps are needed to be taken from a specific node
to all other nodes) in the semantic-based network and preference rat-
ings of the abstract art images: Nodes (images) that were farther away –
more distinct – from all other images, in how they were described, were
most preferred. Thus, properties of the semantic-based network – esti-
mated from verbal descriptors of the abstract art paintings – are more
closely related to people’s preferences than those of the GIP-based
network, despite the fact that one would expect preference for abstract
art paintings to rely in formal properties of the image. Furthermore, we
found several trends between GIPs and preference ratings in single
communities. These tendencies do not reach significance

We also found that the semantic-based network classifies images
according to their art style better than the GIP-based network. Our
participants described abstract art paintings from apecific art styles
with similar terms, but paintings from specific art styles did not have
similar GIPs.

The findings of Study 2 – a semantic-based network relates to pre-
ference ratings and is more useful to classify abstract art paintings ac-
cording to their art style – highlight the role of semantic descriptions on
people’s preferences for abstract art paintings. This finding is surprising
since abstract art paintings lack figural content and are, therefore, re-
latively poor in semantic content. Furthermore, the findings of Study 2
demonstrate that when abstract art paintings are divided into sub-
groups (based on semantic descriptions), relations between GIPs and
preference ratings emerge (see Fig. 3). However, none of these relations
reach significance. Therefore, we pursued this finding in Study 3.

4. Study 3

4.1. Introduction

In Study 3 we conducted an online rating study of images from
different sub-groups of abstract art paintings. We confined our images
to three artists (Piet Mondrian, Jackson Pollock and Mark Rothko) re-
presenting three distinct art styles (Neo-plasticism, Action Painting,
Color Field Painting) to create relatively homogenous sub-sets that

Table 1
Network measures for the semantic-based and GIP-based networks.

Semantic GIPs

CC .69 .68
ASPL 4.11 5.16
Q .64 .65
CCrand .05 .09
ASPLrand 2.59 2.61

Note - GIPs – Global Image Properties; CC – clustering coefficient; ASPL –
average shortest path length; Q – modularity measure; CCrand – Clustering
coefficient of random graph; ASPLrand – average shortest path length of
random graph.
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differ between each other. (A) Neo-plasticism (also De Stijl, related to
Constructivism; representative artist: Piet Mondrian) follows strict rules
of geometrical composition and emphasizes correct form (Mondrian,
1921). (B) Action Painting (a sub-category of Abstract Expressionism;
representative artist: Jackson Pollock) focusses on movement (during
creation and in depiction) and are overall highly self-similar (Taylor,
Micolich, & Jonas, 1999). In contrast, (C) Color Field Painting (also a
sub-category of Abstract Expressionism; representative artist: Mark
Rothko) is defined by large areas of uninflected hues with only few
gradients (Wilkin & Belz, 2007). These areas create the impression of a
flat picture.

We examined the relation between preference ratings and GIPs for
these sub-groups of images. Based on results of Study 1, we did not
expect preference ratings to correlate with GIPs in general (across all
abstract art paintingis). Based on Study 2, we predicted the following
relations between GIP and preferences for the three sub-groups of
paintings: A negative correlation of complexity and a positive

correlation with anisotropy in Mondrian paintings, since these paint-
ings emphasize form that is measured by these two values; a positive
correlation for self-similarity in Pollocks paintings since self-similarity
is regarded as characteristic of these images; and a positive correlation
with color values in Rothkos paintings, since these paintings focus on
color.

4.2. Methods

4.2.1. Participants
Twenty participants (21–64 years; Mean=35.5 years, SD=10.0; 5

female) took part in this study. This study was approved by the
University of Pennsylvania Institutional Review Board.

4.2.2. Stimuli
Stimuli were 90 images of abstract art painting, equally divided (30

Fig. 2. 2D visualization of the semantic-based (A) and GIP-based
(B) networks. Nodes represent the different abstract art painting
and edges represent symmetrical, binary relations between nodes.
Background hues relate to the different communities detected. Art
styles are color-coded. The numbers indicate the painting
(Supplemental Table 3).

Fig. 3. Scatter plot of local ASPL distances of the 79 abstract art paintings and
their preference scores.

Table 2
Distribution of paintings from different art styles on the communities of the
semantics network and the GIPs network. Displayed are the numbers of
paintings from an art style that were located in the respective cluster (for
Semantics and GIPs). The last column shows the standard deviation of the lo-
cation. Lower values in standard deviation represent a more equal distribution.

Art style No. of images C1 C2 C3 C4 C5 C6 SD

Semantic-based Network
Action Painting 20 1 13 2 4 0 0 4.97
Color Field Painting 15 1 2 2 1 4 5 1.64
Constructivism 14 1 3 2 5 3 0 1.75
Suprematism 9 3 0 0 1 5 0 2.07
Other 21 6 7 3 4 1 0 2.74

GIP-based Network
Action Painting 20 4 4 3 3 3 5 0.81
Color Field Painting 15 1 2 1 4 2 4 1.37
Constructivism 14 0 2 3 6 1 2 2.07
Suprematism 9 1 0 1 0 6 1 2.26
Other 21 3 3 3 4 3 5 0.84
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images) each by Piet Mondrian (Neo-Plasticism), Jackson Pollock
(Action Painting), and Mark Rothko (Color Field Painting). Images were
presented with a size of 800 pixels (longest side).

4.2.3. Global image properties
The same GIPs as in Study 1 were calculated (self-similarity, com-

plexity, anisotropy, color hue, color saturation, color value, and aspect
ratio).

4.2.4. Statistical analysis
We conducted a one-way ANOVA to examine the effect of group on

mean ratings for preference. Next, we calculated mean values of GIPs
for images from all three groups (Mondrian, Pollock, Rothko). Finally,
we calculated Pearson’s r coefficients for correlations between pre-
ference ratings and GIPs for all images and for the three subgroups of
images. To control for multiple comparisons, we performed a Holm-
Bonferroni correction on the results.

4.2.5. Procedure
In an online experiment via Amazon’s Mechanical Turk

(Buhrmester, Kwang, & Gosling, 2011), participants rated the images by
preference on a scale from 1 (do not like) to 7 (like very much). Images
were presented in randomized order and there was no restriction in
presentation time.

4.3. Results

First, we investigated the differences in mean preference ratings
across the three groups of images. A Group (Mondrian, Pollock, Rothko)
One-Way ANOVA on the effect of artist on mean preference ratings
revealed a significant effect of Group, F(2,75)= 63.219, p < .001
(Fig. 5). Post-hoc t-test analyses revealed that this effect is driven by a
greater preference for Pollock images (Mean=4.31, SD= .34) com-
pared to the Modrian (Mean=3.5, SD= .58) and Rothko (Mean=
3.01, SD= .41) images (all p’s< .001).

Next, we computed GIP values across the three groups of images.
Self-similarity and complexity were higher in Pollock’s paintings than
in the other groups, while color hue and color saturation were higher in
Rothko’s paintings than in the other two groups. Finally, Mondrian’s
paintings stood out by high values of anisotropy as compared to the
other two groups (Table 3).

Finally, we investigated the relation between preference ratings and
GIPs for the three groups. We found that participants’ mean preference
ratings correlated positively with self-similarity and complexity, while
anisotropy and color (saturation and value) correlated negatively with
preference (Fig. 6). For Mondrian paintings, preference ratings

correlated negatively with anisotropy. However, in contrast to the
overall results, people preferred less self-similar Pollock paintings. This
effect was driven by the participant‘s preference for Pollock’s images
with self-similarity values similar to those of Mondrian and Pollock
paintings (Fig. 7).

4.4. Discussion

In Study 3, we examined the relation between preference ratings

Fig. 4. Displayed are the Pearson’s r coefficients for the correlation of preference ratings with GIPs over all images and over semantic-based and GIP-based clusters.
None of the correlation reached significance after Holm-Bonferroni correction (p < .01). We still include this figure to show the tendencies (as compared to no effect
over all images).

Fig. 5. Average preference ratings of Mondrian, Pollock, and Rothko images;
*** = p< .001.

Table 3
Mean values of GIPs for images categorized by artist (standard error in para-
ntheses).

Mondrian Pollock Rothko

PHOG Self-Similarity 0.604 0.862 0.585
(0.146) (0.072) (0.097)

HOG Complexity 10.174 28.659 2.529
(5.782) (6.674) (1.009)

HOG Anisotropy 0.00118 0.00024 0.00071
(0.00035) (0.00007) (0.00016)

Color Hue 0.269 0.247 0.378
(0.135) (0.100) (0.239)

Color Saturation 0.222 0.250 0.515
(0.146) (0.117) (0.232)

Color Value 0.748 0.543 0.537
(0.116) (0.127) (0.427)

Aspect Ratio 1.176 0.982 1.174
(0.297) (0.427) (0.306)
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and GIPs in sub-groups of abstract art paintings. An analysis of GIPs
revealed that Pollock‘s paintings are more self-similar than Mondrians
and Rothkos paintings. In contrast, color saturation of Mondrian‘s and
Pollock‘s paintings are relatively similar, while Rothkos paintings are
more highly saturated. Complexity differentiated the painters
(Mondrian: medium complexity, Pollock: high complexity, Rothko: low
complexity).

Most of the GIP values (self-similarity, complexity, anisotropy, color
saturation and aspect ratio) correlated with preference ratings. This
observation is in contrast to the findings on abstract art paintings in
Study 1. A possible explanation might be the specificity of the paintings
from the three artists: Pollocks paintings are –possibly due to cultural

reasons – generally preferred and possess on average high values in self-
similarity and complexity and low values in anisotropy. Therefore, the
effect on preferences of these three GIPs might be driven by this group.

As we predicted, correlations of preference ratings with GIPs dif-
fered by artist. Mondrian paintings with lower anisotropy were pre-
ferred. Pollock paintings with less self-similarity were preferred (this in
in contrast with the finding that over all stimuli, there was a preference
for more self-similar images). We did not find any correlations between
GIPs and preferences of Rothko’s paintings. Our results demonstrate
that treating abstract art paintings as a single category obscures po-
tential relation between GIPs and aesthetic judgment for specific artists.

5. General discussion

In the current series of studies, we investigated the relationships
between verbal descriptors, GIPs and preferences of abstract art
paintings. We did so by combining computational network science
methods with empirical approaches. Overall, verbal descriptors related
more closely to preferences for abstract art paintings. Furthermore,
abstract art paintings can be classified into distinct sub-groups that
warrant seperate examination.

In Study 1, we found that people’s preference for abstract art
paintings did not correlate with GIPs. Such correlations were present
for other categories of images. Specifically, people prefered less com-
plex (and less self-similar) magazine covers – which mostly contain only
a single image and relatively little printed text (Braun et al., 2013).
People also prefered less self-similar images for landscape photographs
as reported previously (e.g., Mullin et al., 2017). Similarly, people
preferred self-similar and isotropic (low values in anisotropy) house
facades. This observation might relate to the hypothesis that people
prefer natural-looking patterns (which are self-similar and isotropic) in
architecture (Joye, 2007). In face photographs (attractiveness), people
prefered images with lower values in self-similarity. Usually, people
prefer younger faces, which have fewer wrinkles – and are therefore less

Fig. 6. Pearson's r correlations of preference ratings with GIPs. Displayed are the correlataions for all images and for images from the respective artists. * = p < .01
(Holm-Bonferroni corrected).

Fig. 7. Single images, as represented by their values on self-similarity, ac-
cording to their preference values. Mondrian: Pearson’s r= .329, p= .076, 95
% confidence interval −.034 to .649, Pollock: r = −.500, p < .01, 95 %
confidence interval −.937 to −.185; Rothko: r= .006, p= .973, 95 % con-
fidence interval −.358 to .398.
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self-similar (Menzel et al., 2015). Additionally, we found correlations of
preference ratings with GIPs in art categories (e.g., art portraits (beauty
and attractiveness): positive with complexity and anisotropy; landscape
drawings: positive with complexity, landscape paintings: negative with
self-similarity; art installations: positive with self-similarity and com-
plexity). One possibility for why preference ratings and GIPs do not
correlate in abstract art paintings is that people’s taste for abstract art
paintings varies considerably (Mallon et al., 2014). Another possiblity is
that abstract art paintings comprise a heterogeneouos group and should
be analyzed using better defined sub-groups.

In Study 2 we applied computational network science methods to
analyse the relation of verbal descriptors, GIPs, and people’s pre-
ferences in abstract art paintings (Christensen et al., 2018; Siew et al.,
2019). We estimated networks from the same abstract art paintings
(Lyssenko et al., 2016) – one based on verbal descriptions (semantic-
based network) and the other on GIPs (GIP-based network) of these
paintings. We found that a local property of the semantic-based, and not
GIP-based, network correlated marginally with preference ratings: The
farther (more distinct) an image was from all other images in such a
semantic-based network, the more it was preferred. Our computational
approach allows us to examine whether these images cluster into sub-
communities and if these sub-communities relate to various art styles.
The semantic-based network was better than the GIP-based network in
clustering abstract art paintings from the same art style. This observa-
tion means that subjective perceptions (as reflected by verbal descrip-
tions) of abstract art paintings from the same art style are more similar
than their objective GIPs. Following this observation, art styles can be
used as sub-groups in the category of abstract art paintings and should
be investigated seperately. Perhaps automatic algorithms of image
processing could include verbal descriptions, as classification only
based on image properties potentially fail. Finally, this study demon-
strates the usefulness of applying computational methods to move be-
yond correlation analysis in examining image based and human-based
properties of images.

Based on the results of Study 1 and Study 2, we conducted Study 3
to investigate sub-groups of abstract art paintings (namely paintings
from 3 artists) for correlations of preference ratings with GIPs. We se-
lected images from three well-known artists representing distinct styles
of abstract art paintings in order to create a controlled set of stimuli.
Preference ratings correlated positively with self-similarity for all three
artists, but negatively within Pollock’s Action Paintings. By contrast,
people preferred more isotropic Mondrian paintings. Neo-plasticist
paintings of Mondrian emphasize form and the most famous Mondrian
paintings (i.e., grid-based paintings created after 1918) are the most
isotropic. These famous Mondrian paintings are frequently shown in
various contexts and, possibly, participants remembered them. Since
familiarity can predict preference (Leder, 2001), it is not surprising that
participants preferred isotropic Mondrian paintings.

On the question of why preferences for abstract art paintings vary
across participants, we offer provisional answers. Peoples’ preferences
relate partly to their semantic descriptions of these paintings.
Furthermore, preferences are better predicted by GIPs if abstract art
paintings are grouped by style. We speculate that people have a specific
taste in art (e.g., some prefer Mondrians neo-plasticist paintings over
Pollocks drip paintings, for others it is the other way around). Within
art styles, specific GIPs are preferred. However, because semantic de-
scriptors predict general preference ratings and a combination of GIPs
does not, we speculate that GIPs – while being narrowly relevant to
preferences within a specific art style – cannot be a general explanation
for people’s preferences for abstract art.”Our findings resonate with a
similar a debate in computational semantics; whether textual-based
computational methods of semantics predict human behavior
(Mandera, Keuleers, & Brysbaert, 2017, 2019, Hutchison, Balota,
Cortese, & Watson, 2008; Kenett, 2018; Mandera, Keuleers, &
Brysbaert, 2015; Vankrunkelsven, Verheyen, Storms, & De Deyne,
2018). Such textual-based methods compute multidimensional

semantic vectors based on co-occurrence statistics from textual corpora,
while behavioral-based methods compute relations between concepts
based on linguistic output (Kenett, 2018, 2019). Eventhough textual-
based methods capture some aspects of semantic similarity and memory
retrieval (Griffiths, Steyvers, & Firl, 2007; Mandera et al., 2017), be-
havioral-based methods seem to outperform the textual-based methods
in predicting human behavior (Kenett et al., 2017; Vankrunkelsven
et al., 2018).

6. Limitations

Although we aimed to investigate a representative subset of abstract
art paintings in Study 2, we still based our analysis on availability of
artworks. Therefore, a generalization of the results with larger and
more varied abstract art paintings samples would be useful. In Study 3,
we did not find any significant correlations of GIPs with preference
ratings in Rothko paintings. This could indicate that 30 images might be
too few for such a kind of studies.

7. Summary

In sum, we conducted a series of studies examining the relation
between verbal descriptors, GIPs, and preferences for abstract art
paintings. Our results demonstrate that applying quantitative methods
from network science can be fruitful in the study of aesthetics.
Furthermore, we demonstrate how verbal (semantic) descriptions
should be taken into account to divide abstract art paintings into sub-
groups.
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